论文标题

通过自定进程异常检测无监督的面部变形攻击检测

Unsupervised Face Morphing Attack Detection via Self-paced Anomaly Detection

论文作者

Fang, Meiling, Boutros, Fadi, Damer, Naser

论文摘要

基于监督的基于学习的变形攻击检测(MAD)解决方案在处理已知变形技术和已知数据源的攻击方面取得了杰出的成功。但是,鉴于变形攻击的差异,由于现有MAD数据集的多样性和数量不足,监督的MAD解决方案的性能大大下降。为了解决这一问题,我们通过利用现有的大规模面部识别(FR)数据集和卷积自动编码器的无监督性质,通过自定进度的异常检测(SPL-MAD)提出了一个完全无监督的疯狂解决方案。使用一般的FR数据集,这些数据集可能包含无意识的和未标记的操纵样品来训练自动编码器,可以导致攻击和善意样本的各种重建行为。我们从经验上分析了这种行为,以提供扎实的理论基础来设计我们的无监督的疯狂解决方案。这也导致建议以完全无监督的方式整合我们改良的修改后的自定进度学习范式,以增强善意和攻击样本之间的重建误差可分离性。我们对各种MAD评估数据集的实验结果表明,所提出的无监督的SPL-MAD解决方案优于广泛监督的MAD解决方案的整体性能,并为未知攻击提供了更高的概括性。

The supervised-learning-based morphing attack detection (MAD) solutions achieve outstanding success in dealing with attacks from known morphing techniques and known data sources. However, given variations in the morphing attacks, the performance of supervised MAD solutions drops significantly due to the insufficient diversity and quantity of the existing MAD datasets. To address this concern, we propose a completely unsupervised MAD solution via self-paced anomaly detection (SPL-MAD) by leveraging the existing large-scale face recognition (FR) datasets and the unsupervised nature of convolutional autoencoders. Using general FR datasets that might contain unintentionally and unlabeled manipulated samples to train an autoencoder can lead to a diverse reconstruction behavior of attack and bona fide samples. We analyze this behavior empirically to provide a solid theoretical ground for designing our unsupervised MAD solution. This also results in proposing to integrate our adapted modified self-paced learning paradigm to enhance the reconstruction error separability between the bona fide and attack samples in a completely unsupervised manner. Our experimental results on a diverse set of MAD evaluation datasets show that the proposed unsupervised SPL-MAD solution outperforms the overall performance of a wide range of supervised MAD solutions and provides higher generalizability on unknown attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源