论文标题

通过总相关性的功能连通性:视觉区域的分析结果

Functional Connectivity via Total Correlation: Analytical results in Visual Areas

论文作者

Li, Qiang, Steeg, Greg Ver, Malo, Jesus

论文摘要

最近的研究调用了多元总相关概念的优越性,而不是生物网络中功能连通性的传统成对度量。这些开创性的作品无疑表明,总相关性的经验度量导致连通性模式与使用最流行的度量,线性相关或其高阶和非线性替代互助信息不同。但是,它们没有提供分析结果,可以解释明显的多变量与双变量定义之外的差异。此外,由于没有提供已知的分析结果的受控方案,因此无法直接解决经验估计器的准确性。这一点至关重要,因为信息理论衡量标准的经验估计总是具有挑战性的。与以前的经验方法相反,在这项工作中,我们提出了分析结果,以证明与互信息相对于共同信息的优势来描述功能连接。特别是,我们在神经网络中进行早期视力(视网膜LGN皮层),这是现实但简单以获得分析结果的。提出的分析设置也可用于检查总相关性的经验估计。因此,一旦可以信任某些估计值,就可以通过自然信号探索行为,而分析结果(假设高斯信号)可能无效。在这方面,作为应用程序(a),我们探讨了具有自然图像的分析性视网膜LGN-Cortex网络中连接性和反馈的影响,并且(b)我们从实际的fMRI记录中评估了视觉区域V1-V2-V3-V4中的功能连通性。

Recent studies invoke the superiority of the multivariate Total Correlation concept over the conventional pairwise measures of functional connectivity in biological networks. Those seminal works certainly show that empirical measures of Total Correlation lead to connectivity patterns that differ from what is obtained using the most popular measure, linear correlation, or its higher order and nonlinear alternative Mutual Information. However, they do not provide analytical results that explain the differences beyond the obvious multivariate versus bivariate definitions. Moreover, the accuracy of the empirical estimators could not be addressed directly because no controlled scenario with known analytical result was provided either. This point is critical because empirical estimation of information theory measures is always challenging. As opposed to previous empirical approaches, in this work we present analytical results to prove the advantages of Total Correlation over Mutual Information to describe the functional connectivity. In particular, we do it in neural networks for early vision (retina-LGN-cortex) which are realistic but simple enough to get analytical results. The presented analytical setting is also useful to check empirical estimates of Total Correlation. Therefore, once certain estimate can be trusted, one can explore the behavior with natural signals where the analytical results (that assume Gaussian signals), may not be valid. In this regard, as applications (a) we explore the effect of connectivity and feedback in the analytical retina-LGN-cortex network with natural images, and (b) we assess the functional connectivity in visual areas V1-V2-V3-V4 from actual fMRI recordings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源