论文标题

全球太阳对流的隐式涡流模拟:数值分辨率在非旋转和旋转情况下的影响

Implicit large eddy simulations of global solar convection: effects of numerical resolution in non-rotating and rotating cases

论文作者

Guerrero, G., Stejko, A. M., Kosovichev, A. G., Smolarkiewicz, P. K, Strugarek, A.

论文摘要

模拟深太阳对流及其耦合的平均场运动是一个巨大的挑战,很少有观察结果限制了遭受网格分辨率非物理影响的模型。我们介绍了用Eulag-MHD代码执行的深太阳对流的流体动力全局大型模拟(Iles),并探讨网格分辨率对旋转和非旋转对流属性的影响。基于低阶力矩和湍流光谱的结果表明,在非旋转模拟中可以实现收敛性,在径向方向上提供了足够的分辨率。该流量是高度各向异性的,水平发散运动中包含的能量超过了三个以上的径向对应物。相比之下,在旋转模拟中,最大的能量是水平运动的环形部分。随着网格分辨率的增加,湍流相关性的变化以使得在模拟中以更粗的网格在模拟中获得的太阳样差异旋转,从而过渡到反 - 极差分旋转。这种变化的原因是有效粘度对驱动大规模流量的力平衡的贡献。随着有效粘度的降低,角动量平衡不断提高,但是子午方向的力平衡减少了,有利于强烈的子午流动,从而将角动量推向了杆子。结果表明,获得角动量的正确分布可能不仅仅是数值分辨率的问题。在模拟太阳内部时,可能需要考虑其他物理学(例如磁性或近表面剪切层)。

Simulating deep solar convection and its coupled mean-field motions is a formidable challenge where few observational results constrain models that suffer from the non-physical influence of the grid resolution. We present hydrodynamic global Implicit Large-Eddy simulations (ILES) of deep solar convection performed with the EULAG-MHD code, and explore the effects of grid resolution on the properties of rotating and non-rotating convection. The results, based on low-order moments and turbulent spectra reveal that convergence could be achieved in non-rotating simulations provided sufficient resolution in the radial direction. The flow is highly anisotropic, with the energy contained in horizontal divergent motions exceeding by more than three orders of magnitude their radial counterpart. By contrast, in rotating simulations the largest energy is in the toroidal part of the horizontal motions. As the grid resolution increases, the turbulent correlations change in such a way that a solar-like differential rotation, obtained in the simulation with the coarser grid, transitions to the anti-solar differential rotation. The reason for this change is the contribution of the effective viscosity to the balance of the forces driving large-scale flows. As the effective viscosity decreases, the angular momentum balance improves, yet the force balance in the meridional direction lessens, favoring a strong meridional flow that advects angular momentum towards the poles. The results suggest that obtaining the correct distribution of angular momentum may not be a mere issue of numerical resolution. Accounting for additional physics, such as magnetism or the near-surface shear layer, may be necessary in simulating the solar interior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源