论文标题

从相互作用的代理商到玻尔兹曼·吉布斯的货币分配

From interacting agents to Boltzmann-Gibbs distribution of money

论文作者

Cao, Fei, Jabin, Pierre-Emmanuel

论文摘要

我们调查了货币交流的公正模型:代理商在彼此之间随机付出了一美元(如果有)。令人惊讶的是,这种动态最终导致了财富的几何分布(在[11]中由Dragulescu和Yakovenko经验显示,并严格地在[2,12,15,18]中表现出来)。我们证明,由于代理的数量进入无穷大,这将使混乱的统一传播产生,这将随机动力学与普通微分方程的确定性无限系统联系起来。然后,通过利用几种熵 - 内向耗散不等式来分析此确定性描述,并在相对熵中提供了趋于平衡(几何分布)的定量差异速率。

We investigate the unbiased model for money exchanges: agents give at random time a dollar to one another (if they have one). Surprisingly, this dynamics eventually leads to a geometric distribution of wealth (shown empirically by Dragulescu and Yakovenko in [11] and rigorously in [2,12,15,18]). We prove a uniform-in-time propagation of chaos result as the number of agents goes to infinity, which links the stochastic dynamics to a deterministic infinite system of ordinary differential equations. This deterministic description is then analyzed by taking advantage of several entropy-entropy dissipation inequalities and we provide a quantitative almost-exponential rate of convergence toward the equilibrium (geometric distribution) in relative entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源