论文标题

评估基于DCGAN的质量和多样性,通常合成糖尿病性视网膜病变图像

Evaluating the Quality and Diversity of DCGAN-based Generatively Synthesized Diabetic Retinopathy Imagery

论文作者

Dragan, Cristina-Madalina, Saad, Muhammad Muneeb, Rehmani, Mubashir Husain, O'Reilly, Ruairi

论文摘要

公开可用的糖尿病性视网膜病(DR)数据集不平衡,其中包含有限的图像。在训练机器学习分类器时,这种不平衡有助于过度适应。随着DR阶段的严重性增加,影响分类器的诊断能力,这种不平衡的影响会加剧。可以使用生成对抗网络(GAN)来解决这种不平衡,以增强数据集使用合成图像。如果产生高质量和多样化的图像,生成合成图像是有利的。为了评估合成图像的质量和多样性,使用了几种评估指标,例如多尺度结构相似性指数(MS-SSSIM),余弦距离(CD)和Fréchet成立距离(FID)。了解每个指标在评估基于GAN的合成图像的质量和多样性方面的有效性对于选择图像以进行增强至关重要。迄今为止,在生物医学图像的背景下,对这些指标的适当性进行了有限的分析。这项工作促进了对这些评估指标的经验评估,该指标适用于深卷积GAN(DCGAN)产生的合成增殖DR成像。此外,指标表明合成图像的质量和多样性的能力以及与分类器性能的相关性。这可以定量选择合成图像和知情的增强策略。结果表明,FID适合评估质量,而MS-SSIM和CD适合评估合成成像的多样性。此外,如F1和AUC分数所示,卷积神经网络(CNN)和有效网络分类器的出色性能对于增强数据集所示,这表明了合成成像增强不平衡数据集的功效。

Publicly available diabetic retinopathy (DR) datasets are imbalanced, containing limited numbers of images with DR. This imbalance contributes to overfitting when training machine learning classifiers. The impact of this imbalance is exacerbated as the severity of the DR stage increases, affecting the classifiers' diagnostic capacity. The imbalance can be addressed using Generative Adversarial Networks (GANs) to augment the datasets with synthetic images. Generating synthetic images is advantageous if high-quality and diversified images are produced. To evaluate the quality and diversity of synthetic images, several evaluation metrics, such as Multi-Scale Structural Similarity Index (MS-SSIM), Cosine Distance (CD), and Fréchet Inception Distance (FID) are used. Understanding the effectiveness of each metric in evaluating the quality and diversity of GAN-based synthetic images is critical to select images for augmentation. To date, there has been limited analysis of the appropriateness of these metrics in the context of biomedical imagery. This work contributes an empirical assessment of these evaluation metrics as applied to synthetic Proliferative DR imagery generated by a Deep Convolutional GAN (DCGAN). Furthermore, the metrics' capacity to indicate the quality and diversity of synthetic images and a correlation with classifier performance is undertaken. This enables a quantitative selection of synthetic imagery and an informed augmentation strategy. Results indicate that FID is suitable for evaluating the quality, while MS-SSIM and CD are suitable for evaluating the diversity of synthetic imagery. Furthermore, the superior performance of Convolutional Neural Network (CNN) and EfficientNet classifiers, as indicated by the F1 and AUC scores, for the augmented datasets demonstrates the efficacy of synthetic imagery to augment the imbalanced dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源