论文标题

功能性隐藏动态地理模型的自适应拉索估计

Adaptive LASSO estimation for functional hidden dynamic geostatistical model

论文作者

Maranzano, Paolo, Otto, Philipp, Fassò, Alessandro

论文摘要

我们根据功能性隐藏动态地理模型(F-HDGM)的惩罚最大似然估计器(PMLE)提出了一种新型的模型选择算法。这些模型采用具有嵌入式时空动力学的经典混合效应回归结构,以模拟在功能域中观察到的地理价值数据。因此,感兴趣的参数是该域之间的函数。该算法同时选择了用于对响应变量与协变量之间的固定效应关系进行建模的相关样条基函数和回归变量。这样,它会自动收缩到功能系数的零部分或无关回归器的全部效果。该算法基于迭代优化,并使用自适应的绝对收缩和选择器操作员(LASSO)惩罚函数,其中未含量的F-HDGM最大可能性估计器获得了其中的权重。最大化的计算负担大大减少了可能性的局部二次近似。通过一项蒙特卡洛模拟研究,我们分析了在不同情况下算法的性能,包括回归器之间的强相关性。我们表明,在我们考虑的所有情况下,受罚的估计器的表现都优于未估计器。我们将算法应用于一个真实的案例研究,在一个实际案例研究中,在意大利伦巴第地区的小时二氧化氮浓度记录的记录被建模为一个功能过程,具有多种天气和土地覆盖的协变量。

We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hidden dynamic geostatistical models (f-HDGM). These models employ a classic mixed-effect regression structure with embedded spatiotemporal dynamics to model georeferenced data observed in a functional domain. Thus, the parameters of interest are functions across this domain. The algorithm simultaneously selects the relevant spline basis functions and regressors that are used to model the fixed-effects relationship between the response variable and the covariates. In this way, it automatically shrinks to zero irrelevant parts of the functional coefficients or the entire effect of irrelevant regressors. The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (LASSO) penalty function, wherein the weights are obtained by the unpenalised f-HDGM maximum-likelihood estimators. The computational burden of maximisation is drastically reduced by a local quadratic approximation of the likelihood. Through a Monte Carlo simulation study, we analysed the performance of the algorithm under different scenarios, including strong correlations among the regressors. We showed that the penalised estimator outperformed the unpenalised estimator in all the cases we considered. We applied the algorithm to a real case study in which the recording of the hourly nitrogen dioxide concentrations in the Lombardy region in Italy was modelled as a functional process with several weather and land cover covariates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源