论文标题
通过协同进化的异质多代理零射击协调
Heterogeneous Multi-agent Zero-Shot Coordination by Coevolution
论文作者
论文摘要
可以通过看不见的合作伙伴生成可以实现零拍的代理(ZSC)是合作多代理增强学习(MARL)的新挑战。最近,一些研究通过在培训过程中将代理暴露给不同伴侣的代理商在ZSC中取得了进步。他们通常在训练伙伴时涉及自我竞争,因为他们隐含地假设任务是同质的。但是,许多现实世界的任务都是异质的,因此以前的方法可能效率低下。在本文中,我们首次研究了异构ZSC问题,并提出了一种基于协同进化的通用方法,该方法通过三个子过程进行了两个座位和合作伙伴的种群:配对,更新和选择。各种异质任务的实验结果突出了考虑异质设置的必要性,并证明我们提出的方法是用于异质ZSC任务的有前途的解决方案。
Generating agents that can achieve zero-shot coordination (ZSC) with unseen partners is a new challenge in cooperative multi-agent reinforcement learning (MARL). Recently, some studies have made progress in ZSC by exposing the agents to diverse partners during the training process. They usually involve self-play when training the partners, implicitly assuming that the tasks are homogeneous. However, many real-world tasks are heterogeneous, and hence previous methods may be inefficient. In this paper, we study the heterogeneous ZSC problem for the first time and propose a general method based on coevolution, which coevolves two populations of agents and partners through three sub-processes: pairing, updating and selection. Experimental results on various heterogeneous tasks highlight the necessity of considering the heterogeneous setting and demonstrate that our proposed method is a promising solution for heterogeneous ZSC tasks.