论文标题

随着时间的推移,可进行恶意软件检测的强大机器学习

Robust Machine Learning for Malware Detection over Time

论文作者

Angioni, Daniele, Demetrio, Luca, Pintor, Maura, Biggio, Battista

论文摘要

Android恶意软件的存在和持久性是困扰这个信息时代的持续威胁,现在广泛使用机器学习技术来部署更有效的检测器,可以阻止大多数恶意程序。但是,这些算法尚未开发出来追求恶意软件的自然演变,并且由于这种概念拖延而随着时间的推移会大大降级。当前,最先进的技术仅着眼于检测这种漂移的存在,或者通过依靠频繁更新模型来解决它。因此,关于概念漂移的原因缺乏知识,并且可以应对时间流逝的临时解决方案仍然不足。在这项工作中,我们开始解决这些问题,因为我们提出了(i)漂移分析框架,以确定数据的哪些特征导致漂移,并且(ii)SVM-CB,SVM-CB,这是一种时间吸引的分类器,该分类器利用漂移分析信息以减慢性能下降。我们通过将其随着时间的时间与最先进的分类器进行比较,通过将其降解的降低进行比较,强调了我们的贡献的功效,我们表明SVM-CB更好地承受了自然表征恶意软件域的分布变化。最后,我们通过讨论方法的局限性以及如何将我们的贡献作为朝着更多抗时代的分类器迈出的第一步,不仅要解决问题,而且还了解影响数据的概念漂移。

The presence and persistence of Android malware is an on-going threat that plagues this information era, and machine learning technologies are now extensively used to deploy more effective detectors that can block the majority of these malicious programs. However, these algorithms have not been developed to pursue the natural evolution of malware, and their performances significantly degrade over time because of such concept-drift. Currently, state-of-the-art techniques only focus on detecting the presence of such drift, or they address it by relying on frequent updates of models. Hence, there is a lack of knowledge regarding the cause of the concept drift, and ad-hoc solutions that can counter the passing of time are still under-investigated. In this work, we commence to address these issues as we propose (i) a drift-analysis framework to identify which characteristics of data are causing the drift, and (ii) SVM-CB, a time-aware classifier that leverages the drift-analysis information to slow down the performance drop. We highlight the efficacy of our contribution by comparing its degradation over time with a state-of-the-art classifier, and we show that SVM-CB better withstands the distribution changes that naturally characterize the malware domain. We conclude by discussing the limitations of our approach and how our contribution can be taken as a first step towards more time-resistant classifiers that not only tackle, but also understand the concept drift that affects data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源