论文标题
各向异性奇怪的星形模型超出了标准的最大质量限制,重力脱钩$ f(q)$ gravility
Anisotropic Strange Star Model Beyond Standard Maximum Mass Limit by Gravitational Decoupling in $f(Q)$ Gravity
论文作者
论文摘要
当前的理论发展通过完整的几何变形(CGD)方法确定为重力解耦,该方法已被引入以探索相对论天体物理学中的非Metricity $ Q $效应。在目前的工作中,我们通过利用CGD技术调查了$ f(q)$重力框架中奇怪星的重力分离的各向异性解决方案。为此,我们从Tolman Metric Ansatz以及与HADRONIC MATESS有关的MIT袋模型方程式开始。通过使用两种方法,即模仿$θ$扇区到流体模型的种子径向压力和能量密度,可以获得运动的治疗方程的溶液。获得的模型描述了自我散热的静态,紧凑的物体,其外部解决方案可以由真空schwarzschild anti-de安静的时空给出。特别是,我们使用观察数据使用观察数据对五个恒星候选人,即,即LMC X-4,PSR J1614-2230,PSR J0740+6620,GW190814和GW 170817进行了建模。解决方案的严格生存力测试是通过规律性和稳定条件进行的。我们观察到,非对象参数和解耦常数对稳定有显着影响,以确保物理上可实现的恒星模型。这项工作的创新功能是将稳定的紧凑型物体展示,而不是$ 2 m _ {\ odot} $的质量,而不会引起异国情调。因此,本研究显示了对超压缩天体物理对象的探索的新知觉和身体意义。
The current theoretical development identified as the gravitational decoupling via Complete Geometric Deformation (CGD) method that has been introduced to explore the nonmetricity $Q$ effects in relativistic astrophysics. In the present work, we have investigated the gravitationally decoupled anisotropic solutions for the strange star in the framework of $f(Q)$ gravity by utilizing the CGD technique. To do this, we started with Tolman metric ansatz along with the MIT Bag model equation of state related to the hadronic matter. The solutions of the governing equations of motions are obtained by using two approaches, namely the mimicking of the $θ$ sector to the seed radial pressure and energy density of the fluid model. The obtained models describe the self-gravitating static, compact objects whose exterior solution can be given by the vacuum Schwarzschild Anti-de Sitter spacetime. In particular, we modeled five stellar candidates, viz., LMC X-4, PSR J1614-2230, PSR J0740+6620, GW190814, and GW 170817 by using the observational data. The rigorous viability tests of the solutions have been performed through regularity and stability conditions. We observed that the nonmetricity parameter and decoupling constant show a significant effect on stabilizing to ensure the physically realizable stellar models. The innovative feature of this work is to present the stable compact objects with the masses beyond the $2 M_{\odot}$ without engaging of exotic matter. Therefore, the present study shows a new perception and physical significance about the exploration of ultra-compact astrophysical objects.