论文标题
通过位置和极化依赖真空场的二维激子定制辐射衰减动力学
Customising radiative decay dynamics of two-dimensional excitons via position- and polarisation-dependent vacuum-field interference
论文作者
论文摘要
在二维空间中体现了骨气和电相互作用的特性,过渡金属二核苷(TMDC)中的激子引起了极大的关注。强相关效应,远程传输和谷数依赖性光电特性的实现和应用需要自定义激子衰变动力学。菌株,缺陷和静电掺杂有效地控制了衰减动力学,但会显着干扰TMDC的内在特性,例如电子带结构和激子结合能。同时,真空场操作为工程辐射衰减动力学提供了光学替代方案。已经采用了平面镜子和空腔来管理二维激子的光线相互作用。但是,传统的平板平台无法自定义水平TMDC平面中的辐射衰减景观,或者在不同的泵送和排放频率下独立控制真空场干扰。在这里,我们提出了一个元媒体,以更加光学的自由解决了问题。对于单层Mose2的中性激子,根据其几何形状,元摩尔人将辐射衰减速率操纵了两个数量级。此外,我们通过实验确定了发射强度和光谱线宽之间的相关性。各向异性的元元素表现出依赖极化的辐射衰减对照。我们预计,元元平台将有望定制终生,密度和TMDC激素扩散的二维分布在高级光电效应应用中。
Embodying bosonic and electrically interactive characteristics in two-dimensional space, excitons in transition-metal dichalcogenides (TMDCs) have garnered considerable attention. The realisation and application of strong-correlation effects, long-range transport, and valley-dependent optoelectronic properties require customising exciton decay dynamics. Strains, defects, and electrostatic doping effectively control the decay dynamics but significantly disturb the intrinsic properties of TMDCs, such as electron band structure and exciton binding energy. Meanwhile, vacuum-field manipulation provides an optical alternative for engineering radiative decay dynamics. Planar mirrors and cavities have been employed to manage the light-matter interactions of two-dimensional excitons. However, the conventional flat platforms cannot customise the radiative decay landscape in the horizontal TMDC plane or independently control vacuum field interference at different pumping and emission frequencies. Here, we present a meta-mirror resolving the issues with more optical freedom. For neutral excitons of the monolayer MoSe2, the meta-mirror manipulated the radiative decay rate by two orders of magnitude, depending on its geometry. Moreover, we experimentally identified the correlation between emission intensity and spectral linewidth. The anisotropic meta-mirror demonstrated polarisation-dependent radiative decay control. We expect that the meta-mirror platform will be promising to tailor the two-dimensional distributions of lifetime, density, and diffusion of TMDC excitons in advanced opto-excitonic applications.