论文标题

深网回归基于生成模型的数据标记:从无人机多光谱图像中应用到种子成熟度估计

Generative models-based data labeling for deep networks regression: application to seed maturity estimation from UAV multispectral images

论文作者

Dericquebourg, Eric, Hafiane, Adel, Canals, Raphael

论文摘要

监测种子成熟度是由于气候变化和更加限制的实践而导致农业的越来越多的挑战。野外监测的种子监测对于优化农业过程并通过高发芽来保证产量质量至关重要。传统方法基于现场的有限抽样和实验室分析。此外,它们很耗时,仅允许监视作物场的子部分。这导致由于场内异质性而缺乏整体作物状况的准确性。无人机的多光谱图像允许统一扫描场并更好地捕获作物成熟度信息。另一方面,深度学习方法在估计农艺参数(尤其是成熟度)方面显示出巨大的潜力。但是,它们需要大型标记的数据集。尽管可以使用大量的航空图像,但用地面真理标记它们是一个乏味的,即使不是不可能的任务。在本文中,我们提出了一种使用多光谱无人机图像来估算欧芹种子成熟度的方法,并采用了新的自动数据标记方法。这种方法基于参数和非参数模型,可提供弱标签。我们还考虑了该方法的不同步骤的数据采集协议和性能评估。结果显示出良好的性能,非参数核密度估计器模型可以在用作标记方法时改善神经网络的概括,从而导致更强大,更好地执行深层神经模型。

Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices. Seeds monitoring in the field is essential to optimize the farming process and to guarantee yield quality through high germination. Traditional methods are based on limited sampling in the field and analysis in laboratory. Moreover, they are time consuming and only allow monitoring sub-sections of the crop field. This leads to a lack of accuracy on the condition of the crop as a whole due to intra-field heterogeneities. Multispectral imagery by UAV allows uniform scan of fields and better capture of crop maturity information. On the other hand, deep learning methods have shown tremendous potential in estimating agronomic parameters, especially maturity. However, they require large labeled datasets. Although large sets of aerial images are available, labeling them with ground truth is a tedious, if not impossible task. In this paper, we propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling. This approach is based on parametric and non-parametric models to provide weak labels. We also consider the data acquisition protocol and the performance evaluation of the different steps of the method. Results show good performance, and the non-parametric kernel density estimator model can improve neural network generalization when used as a labeling method, leading to more robust and better performing deep neural models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源