论文标题
TXT2IMG-MHN:使用现代Hopfield网络从文本中生成遥感图像生成
Txt2Img-MHN: Remote Sensing Image Generation from Text Using Modern Hopfield Networks
论文作者
论文摘要
基于文本描述的高分辨率遥感图像的合成在许多实际应用方案中具有很大的潜力。尽管深层神经网络在许多重要的遥感任务中取得了巨大的成功,但是从文本描述中生成现实的遥感图像仍然非常困难。为了应对这一挑战,我们提出了一个新颖的文本形象现代霍普菲尔德网络(TXT2IMG-MHN)。 TXT2IMG-MHN的主要思想是在具有现代Hopfield层的文本和图像嵌入方式上进行层次原型学习。 TXT2IMG-MHN并没有直接学习具体但高度多样化的文本图像联合特征表示,而是旨在从文本图像嵌入中学习最具代表性的原型,从而实现一种粗略的学习策略。然后,可以利用这些学到的原型来代表文本到图像生成任务中更复杂的语义。为了更好地评估生成图像的现实主义和语义一致性,我们使用对合成图像训练的分类模型对真实遥感数据进行零击分类。尽管它很简单,但我们发现,零弹性分类中的总体准确性可以作为评估从文本产生图像的能力的良好指标。基准遥感文本图像数据集上的广泛实验表明,所提出的TXT2IMG-MHN可以生成比现有方法更真实的遥感图像。代码和预培训模型可在线获得(https://github.com/yonghaoxu/txt2img-mhn)。
The synthesis of high-resolution remote sensing images based on text descriptions has great potential in many practical application scenarios. Although deep neural networks have achieved great success in many important remote sensing tasks, generating realistic remote sensing images from text descriptions is still very difficult. To address this challenge, we propose a novel text-to-image modern Hopfield network (Txt2Img-MHN). The main idea of Txt2Img-MHN is to conduct hierarchical prototype learning on both text and image embeddings with modern Hopfield layers. Instead of directly learning concrete but highly diverse text-image joint feature representations for different semantics, Txt2Img-MHN aims to learn the most representative prototypes from text-image embeddings, achieving a coarse-to-fine learning strategy. These learned prototypes can then be utilized to represent more complex semantics in the text-to-image generation task. To better evaluate the realism and semantic consistency of the generated images, we further conduct zero-shot classification on real remote sensing data using the classification model trained on synthesized images. Despite its simplicity, we find that the overall accuracy in the zero-shot classification may serve as a good metric to evaluate the ability to generate an image from text. Extensive experiments on the benchmark remote sensing text-image dataset demonstrate that the proposed Txt2Img-MHN can generate more realistic remote sensing images than existing methods. Code and pre-trained models are available online (https://github.com/YonghaoXu/Txt2Img-MHN).