论文标题
$ k $ -convex空间的Pisier类型不平等现象
Pisier type inequalities for $K$-convex spaces
论文作者
论文摘要
我们使用\ cite {ivhv}的方法概括了hytönen-naor \ cite {hn}的几个定理。特别是,我们给出了另一个必要和充分的条件(请参见(3.2)),为$ k $ -Convex空间,在这里,Naor-Schechtman \ cite {ns}证明了足够的功能。此条件是根据第二阶的界限Riesz转换$ \ {δ^{ - 1} d_i \} _ {i = 1}^n $ in $ l^p(ω_n,x)$。
We generalize several theorems of Hytönen-Naor \cite{HN} using the approach from \cite{IVHV}. In particular, we give yet another necessary and sufficient condition (see (3.2)) to be a $K$-convex space, where the sufficiency was proved by Naor--Schechtman \cite{NS}. This condition is in terms of the boundedness of the second order Riesz transforms $\{Δ^{-1} D_i\}_{i=1}^n$ in $L^p(Ω_n, X)$.