论文标题

$ k $ -convex空间的Pisier类型不平等现象

Pisier type inequalities for $K$-convex spaces

论文作者

Volberg, Alexander

论文摘要

我们使用\ cite {ivhv}的方法概括了hytönen-naor \ cite {hn}的几个定理。特别是,我们给出了另一个必要和充分的条件(请参见(3.2)),为$ k $ -Convex空间,在这里,Naor-Schechtman \ cite {ns}证明了足够的功能。此条件是根据第二阶的界限Riesz转换$ \ {δ^{ - 1} d_i \} _ {i = 1}^n $ in $ l^p(ω_n,x)$。

We generalize several theorems of Hytönen-Naor \cite{HN} using the approach from \cite{IVHV}. In particular, we give yet another necessary and sufficient condition (see (3.2)) to be a $K$-convex space, where the sufficiency was proved by Naor--Schechtman \cite{NS}. This condition is in terms of the boundedness of the second order Riesz transforms $\{Δ^{-1} D_i\}_{i=1}^n$ in $L^p(Ω_n, X)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源