论文标题

恢复部分可观察性下的基础网络动力学系统:一种深度学习方法

Recovering the Graph Underlying Networked Dynamical Systems under Partial Observability: A Deep Learning Approach

论文作者

Machado, Sérgio, Sridhar, Anirudh, Gil, Paulo, Henriques, Jorge, Moura, José M. F., Santos, Augusto

论文摘要

我们研究图形结构识别的问题,即在时间序列之间恢复依赖图的图。我们将这些时间序列数据建模为线性随机网络动力学系统状态的组成部分。我们假设部分可观察性,其中仅观察到包含网络的一个子集的状态演变。我们设计了一个从观察到的时间序列计算的新功能向量,并证明这些特征是线性可分离的,即存在一个超平面,将与连接的节点成对相关的特征群体与与断开对相关的节点相关的特征。这使得可训练各种分类器进行因果推断的功能。特别是,我们使用这些功能来训练卷积神经网络(CNN)。由此产生的因果推理机制优于最先进的W.R.T.样品复杂性。受过训练的CNN概括了结构上不同的网络(密集或稀疏)和噪声级别的轮廓。值得注意的是,他们在通过合成网络(随机图的实现)训练时也可以很好地概括为现实世界网络。最后,所提出的方法始终以成对的方式重建图,也就是说,从每对相应的时间序列中确定每对节点中是否存在边缘或箭头或不存在箭头。这符合大规模系统的框架,在该系统中,网络中所有节点的观察或处理都令人难以置信。

We study the problem of graph structure identification, i.e., of recovering the graph of dependencies among time series. We model these time series data as components of the state of linear stochastic networked dynamical systems. We assume partial observability, where the state evolution of only a subset of nodes comprising the network is observed. We devise a new feature vector computed from the observed time series and prove that these features are linearly separable, i.e., there exists a hyperplane that separates the cluster of features associated with connected pairs of nodes from those associated with disconnected pairs. This renders the features amenable to train a variety of classifiers to perform causal inference. In particular, we use these features to train Convolutional Neural Networks (CNNs). The resulting causal inference mechanism outperforms state-of-the-art counterparts w.r.t. sample-complexity. The trained CNNs generalize well over structurally distinct networks (dense or sparse) and noise-level profiles. Remarkably, they also generalize well to real-world networks while trained over a synthetic network (realization of a random graph). Finally, the proposed method consistently reconstructs the graph in a pairwise manner, that is, by deciding if an edge or arrow is present or absent in each pair of nodes, from the corresponding time series of each pair. This fits the framework of large-scale systems, where observation or processing of all nodes in the network is prohibitive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源