论文标题
RIS AID THZ通信中的液态状态机器授权反射跟踪
Liquid State Machine-Empowered Reflection Tracking in RIS-Aided THz Communications
论文作者
论文摘要
当RIS反射系数得到精确调整时,可重新配置的智能表面(RISS)中的被动横向进行可行,有效的沟通方式。在本文中,我们提出了一个框架,以从Terahertz(THZ)通信系统中的时间序列预测的角度进行深入学习,以跟踪RIS反射系数。所提出的框架对类似的学习驱动的框架实现了两步的增强。具体而言,在第一步中,我们训练液态机器(LSM)在先前的时间步长(称为时间序列序列)上跟踪历史RIS反射系数,并预测其即将到来的时间步骤。我们还通过Xavier初始化技术微调了训练有素的LSM,以降低预测方差,从而导致更高的预测准确性。在第二步中,我们使用集合学习技术,该技术利用多个LSM的预测能力来最大程度地减少预测差异并提高第一步的精度。从数值上证明,在第一步中,采用Xavier初始化技术来微调LSM最多会导致LSM预测方差降低26%,并且在部署了11x11尺寸的RIS时,对现有的对应物的可实现光谱效率(SE)提高了46%。在第二步中,在训练单个LSM的相同计算复杂性下,具有多个LSM的集合学习降低了单个LSM的预测差异高达66%,并最多可改善可实现的SE系统最多54%。
Passive beamforming in reconfigurable intelligent surfaces (RISs) enables a feasible and efficient way of communication when the RIS reflection coefficients are precisely adjusted. In this paper, we present a framework to track the RIS reflection coefficients with the aid of deep learning from a time-series prediction perspective in a terahertz (THz) communication system. The proposed framework achieves a two-step enhancement over the similar learning-driven counterparts. Specifically, in the first step, we train a liquid state machine (LSM) to track the historical RIS reflection coefficients at prior time steps (known as a time-series sequence) and predict their upcoming time steps. We also fine-tune the trained LSM through Xavier initialization technique to decrease the prediction variance, thus resulting in a higher prediction accuracy. In the second step, we use ensemble learning technique which leverages on the prediction power of multiple LSMs to minimize the prediction variance and improve the precision of the first step. It is numerically demonstrated that, in the first step, employing the Xavier initialization technique to fine-tune the LSM results in at most 26% lower LSM prediction variance and as much as 46% achievable spectral efficiency (SE) improvement over the existing counterparts, when an RIS of size 11x11 is deployed. In the second step, under the same computational complexity of training a single LSM, the ensemble learning with multiple LSMs degrades the prediction variance of a single LSM up to 66% and improves the system achievable SE at most 54%.