论文标题
一种视觉分析系统,用于改善基于注意力的流量预测模型
A Visual Analytics System for Improving Attention-based Traffic Forecasting Models
论文作者
论文摘要
通过深度学习(DL)优于不同任务的常规方法,已经大力投入在各个领域中使用DL。交通域中的研究人员和开发人员还为预测任务(例如交通速度估算和到达时间)设计和改进了DL模型。但是,由于DL模型的黑盒属性和流量数据的复杂性(即时空依赖性),分析DL模型存在许多挑战。与域专家合作,我们设计了一个视觉分析系统Attnanalyzer,该系统使用户能够通过允许有效的时空依赖性分析来探索DL模型如何做出预测。该系统结合了动态时间扭曲(DTW)和Granger因果关系测试,以进行计算时空依赖性分析,同时提供映射,表,线图和像素视图,以帮助用户执行依赖性和模型行为分析。为了进行评估,我们提出了三个案例研究,展示了Attnanalyzer如何有效地探索模型行为并改善两个不同的道路网络中的模型性能。我们还提供域专家反馈。
With deep learning (DL) outperforming conventional methods for different tasks, much effort has been devoted to utilizing DL in various domains. Researchers and developers in the traffic domain have also designed and improved DL models for forecasting tasks such as estimation of traffic speed and time of arrival. However, there exist many challenges in analyzing DL models due to the black-box property of DL models and complexity of traffic data (i.e., spatio-temporal dependencies). Collaborating with domain experts, we design a visual analytics system, AttnAnalyzer, that enables users to explore how DL models make predictions by allowing effective spatio-temporal dependency analysis. The system incorporates dynamic time warping (DTW) and Granger causality tests for computational spatio-temporal dependency analysis while providing map, table, line chart, and pixel views to assist user to perform dependency and model behavior analysis. For the evaluation, we present three case studies showing how AttnAnalyzer can effectively explore model behaviors and improve model performance in two different road networks. We also provide domain expert feedback.