论文标题
展开的动力学方法和量子场理论
Unfolded Dynamics Approach and Quantum Field Theory
论文作者
论文摘要
我们研究了未折叠的动力学方法中自相互作用标量场的量化。为此,我们找到并分析了一个具有一般自我交互潜力的4D偏离标量线场的经典展开系统。然后,我们系统地构建了相应的量子场理论的三个不同但相关的展开公式,并通过说明性计算来支持它们:一个展开的功能性Schwinger-dyson系统,一个用于相关函数的未折叠的系统以及一个为角度函数提供的有效系统。我们揭示的最奇怪的功能是,展开的量子换向器会自然正规化:标准的三角功能被加热内核代替,被展开的适当时间参数化。我们还确定了一个适当的时间作为物理时间的辅助5D系统,该系统将产生4D标量动作作为其壳动作。
We study quantization of a self-interacting scalar field within the unfolded dynamics approach. To this end we find and analyze a classical unfolded system describing 4d off-shell scalar field with a general self-interaction potential. Then we systematically construct three different but related unfolded formulations of the corresponding quantum field theory, supporting them with illustrative calculations: an unfolded functional Schwinger-Dyson system, an unfolded system for correlation functions and an unfolded effective system for vertex functions. The most curious feature we reveal is that an unfolded quantum commutator gets naturally regularized: a standard delta-function is replaced with a heat kernel, parameterized by the unfolded proper time. We also identify an auxiliary 5d system, having this proper time as a physical time, which generates 4d scalar action as its on-shell action.