论文标题

LWGNET:用于傅立叶Ptychographic阶段检索的学习线梯度

LWGNet: Learned Wirtinger Gradients for Fourier Ptychographic Phase Retrieval

论文作者

Saha, Atreyee, Khan, Salman S, Sehrawat, Sagar, Prabhu, Sanjana S, Bhattacharya, Shanti, Mitra, Kaushik

论文摘要

傅立叶Ptychographic显微镜(FPM)是一种成像过程,它通过计算手段克服了传统的传统显微镜空间宽宽产品(SBP)的传统限制。它利用使用低数值孔径(NA)物镜捕获的多个图像,并通过频域缝线实现高分辨率阶段成像。现有的FPM重建方法可以广泛地分为两种方法:基于迭代优化的方法,这些方法基于前向成像模型的物理学以及通常采用馈送深度学习框架的数据驱动方法。我们提出了一个混合模型驱动的残留网络,将远期成像系统的知识与深度数据驱动的网络相结合。我们提出的架构LWGNET将传统的电线流优化算法展开为一种新型的神经网络设计,该设计通过复杂的卷积块增强了梯度图像。与其他常规展开技术不同,LWGNET在PAR上执行时使用的阶段较少,甚至比现有的传统和深度学习技术更好,尤其是对于低成本和低动态范围CMOS传感器。低位深度和低成本传感器的性能提高有可能大大降低FPM成像设置的成本。最后,我们在收集的实际数据上持续提高了性能。

Fourier Ptychographic Microscopy (FPM) is an imaging procedure that overcomes the traditional limit on Space-Bandwidth Product (SBP) of conventional microscopes through computational means. It utilizes multiple images captured using a low numerical aperture (NA) objective and enables high-resolution phase imaging through frequency domain stitching. Existing FPM reconstruction methods can be broadly categorized into two approaches: iterative optimization based methods, which are based on the physics of the forward imaging model, and data-driven methods which commonly employ a feed-forward deep learning framework. We propose a hybrid model-driven residual network that combines the knowledge of the forward imaging system with a deep data-driven network. Our proposed architecture, LWGNet, unrolls traditional Wirtinger flow optimization algorithm into a novel neural network design that enhances the gradient images through complex convolutional blocks. Unlike other conventional unrolling techniques, LWGNet uses fewer stages while performing at par or even better than existing traditional and deep learning techniques, particularly, for low-cost and low dynamic range CMOS sensors. This improvement in performance for low-bit depth and low-cost sensors has the potential to bring down the cost of FPM imaging setup significantly. Finally, we show consistently improved performance on our collected real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源