论文标题

量子几何方法,用于量子无知,与统计力学的熵特性一致

A Differential-Geometric Approach to Quantum Ignorance Consistent with Entropic Properties of Statistical Mechanics

论文作者

Ray, Shannon, Alsing, Paul M., Cafaro, Carlo, Jacinto, Shelton

论文摘要

在本文中,我们为与任意降低密度运算符$ρ_s$相关的净化的纯化量构建度量张量和音量。我们还定义了一个量子粗粒(CG),以研究宏观纯化的纯种的体积,我们称之为无知的表面(SOI),而微晶格是$ρ_s$的纯化。在这种情况下,该卷用作宏观物质的多样性,可以量化$ρ_s$中缺少的信息量。使用$ su(2)$,$ SO(3)$和$ SO(N)$的表示SOI的示例,我们显示了CG的两个功能。 (1)从较小体积的非典型宏观开始的系统会演变为较大体积的宏观物质,直到在系统和环境变得更加纠缠的过程中达到平衡宏观底物,并且(2)巨型固化剂的平衡占地面积,尤其是大部分的粗粒层空间,尤其是整体系统的压力。在这里,宏观平衡对应于系统和环境之间的最大纠缠。为了证明特征(1)对于所考虑的示例,我们表明该音量的行为与von Neumann熵相似,因为它对于纯状态为零,最大混合状态最大,并且是凹函数w.r.t的纯度$ρ_s$。这两个功能对于有关热化和Boltzmann的原始CG的典型论证至关重要。

In this paper, we construct the metric tensor and volume for the manifold of purifications associated with an arbitrary reduced density operator $ρ_S$. We also define a quantum coarse-graining (CG) to study the volume where macrostates are the manifolds of purifications, which we call surfaces of ignorance (SOI), and microstates are the purifications of $ρ_S$. In this context, the volume functions as a multiplicity of the macrostates that quantifies the amount of information missing from $ρ_S$. Using examples where the SOI are generated using representations of $SU(2)$, $SO(3)$, and $SO(N)$, we show two features of the CG. (1) A system beginning in an atypical macrostate of smaller volume evolves to macrostates of greater volume until it reaches the equilibrium macrostate in a process in which the system and environment become strictly more entangled, and (2) the equilibrium macrostate takes up the vast majority of the coarse-grainied space especially as the dimension of the total system becomes large. Here, the equilibrium macrostate corresponds to maximum entanglement between system and environment. To demonstrate feature (1) for the examples considered, we show that the volume behaves like the von Neumann entropy in that it is zero for pure states, maximal for maximally mixed states, and is a concave function w.r.t the purity of $ρ_S$. These two features are essential to typicality arguments regarding thermalization and Boltzmann's original CG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源