论文标题
语义增强的文本到SQL通过迭代学习模式链接图
Semantic Enhanced Text-to-SQL Parsing via Iteratively Learning Schema Linking Graph
论文作者
论文摘要
对新数据库的普遍性对于旨在将人类话语解析为SQL语句的文本到SQL系统至关重要。现有作品通过利用确切的匹配方法来确定问题单词和架构项目之间的词汇匹配来实现这一目标。但是,这些方法在其他具有挑战性的场景中失败,例如,表面形式在相应的问题单词和架构项目之间有所不同的同义词替代。在本文中,我们提出了一个名为ISESL-SQL的框架,以迭代地构建问题令牌和数据库模式之间的语义增强的架构链接图。首先,我们以无监督的方式通过探测过程提取PLM的架构链接图。然后,通过深度图学习方法在训练过程中进一步优化了模式链接图。同时,我们还设计了一个称为图形正则化的辅助任务,以改善模式链接图中提到的模式信息。对三个基准测试的广泛实验表明,ISESL-SQL可以始终优于基准,进一步的研究表明其概括性和鲁棒性。
The generalizability to new databases is of vital importance to Text-to-SQL systems which aim to parse human utterances into SQL statements. Existing works achieve this goal by leveraging the exact matching method to identify the lexical matching between the question words and the schema items. However, these methods fail in other challenging scenarios, such as the synonym substitution in which the surface form differs between the corresponding question words and schema items. In this paper, we propose a framework named ISESL-SQL to iteratively build a semantic enhanced schema-linking graph between question tokens and database schemas. First, we extract a schema linking graph from PLMs through a probing procedure in an unsupervised manner. Then the schema linking graph is further optimized during the training process through a deep graph learning method. Meanwhile, we also design an auxiliary task called graph regularization to improve the schema information mentioned in the schema-linking graph. Extensive experiments on three benchmarks demonstrate that ISESL-SQL could consistently outperform the baselines and further investigations show its generalizability and robustness.