论文标题

网络拓扑和特质分布对集体决策的影响

Effects of network topology and trait distribution on collective decision making

论文作者

Liu, Pengyu, Jian, Jie

论文摘要

社交网络在分析个体互动对社会或经济成果的影响方面起着重要作用。我们为一个具有不同特质的个体社区建模互动决策,该社区由具有特质属性节点的社交网络代表。我们开发一个确定性的过程,该过程基于特质属性的社交网络,个人的初始选择以及一组预定的针对决策的预定特征规则,为每个人生成一系列选择。感兴趣的对象是所有个体的累积选择总和的顺序,我们称之为累积顺序,并将其视为集体决策的索引。我们观察到,在一段时间内,累积序列可能是无法预测的或可预测的,表明重复的模式要么升级为极端或不断振荡。我们认为,可预测的累积序列代表了社区极端化或内部冲突的不稳定集体决策,而不可预测的累积序列显示出稳定的变化。我们分析网络拓扑和性状分布对累积序列的概率是可预测,升级和通过模拟振荡的影响。我们的发现包括,随着网络密度的增加,不稳定的集体决策更有可能,集中式网络更有可能具有不稳定的集体决策,并且具有过度聚集或分散的顺从者和反叛者的网络往往会产生不稳定的累积序列。我们讨论了该模型作为在社交网络上直接或间接互动在决策中研究具有不同特征的人的框架的潜力。

Social networks play an important role in analyzing the impact of individual-level interactions on societal or economic outcomes. We model interactive decision making for a community of individuals with different traits, represented by a social network with trait-attributed nodes. We develop a deterministic process generating a sequence of choices for each individual based on a trait-attributed social network, initial choices of individuals and a set of predetermined trait-dependent rules for making decisions. The object of interest is the sequence of cumulative sum of choices over all individuals, which we call the cumulative sequence and consider as an index of collective decisions. We observe that, in a time period, a cumulative sequence can be unpredictable or predictable showing a repeated pattern either escalating to an extreme or constantly oscillating. We consider that predictable cumulative sequences represent unstable collective decisions of communities either extremizing or internally conflicting, while unpredictable cumulative sequences show stable changes. We analyze the effects of network topology and trait distribution on the probability of cumulative sequences being predictable, escalating and oscillating by simulations. Our findings include that unstable collective decisions are more probable as network density increases, that centralized networks are more likely to have unstable collective decisions and that networks with excessively clustered or scattered conformists and rebels tend to produce unstable cumulative sequences. We discuss the potential of the model as a framework for studying individuals with different traits on a social network directly and indirectly interacting in decision making.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源