论文标题

抛物线盆内的动态

Dynamics inside Parabolic Basins

论文作者

Hu, Mi

论文摘要

在本文中,我们研究了抛物线盆内轨道的行为。令$ f(z)= z+az^{m+1}+(\ text {imper Term}),m \ geq1,a \ neq0。$我们选择一个任意常数$ c> 0 $和apoint $ q \ in {\ bf v_j}然后存在一个$ z_0 \ in \ mathcal {p} _j $,以便对于任何$ \ tilde {q} \ in q:= \ cup_ {l = 0}^{\ infty} {\ infty} f^{ - l}( - l}(f^k(q)(f^k(q)) {p} _j}(z_0,\ tilde {q})> c $,其中$ d _ {\ mathcal {p} _j} $是kobayashi metric。在上一篇论文[4]中,我们表明该结果对于吸引盆地无效。

In this paper, we investigate the behavior of orbits inside parabolic basins. Let $f(z)=z+az^{m+1}+(\text{higher terms}), m\geq1, a\neq0.$ We choose an arbitrary constant $C>0$ and a point $q\in{\bf v_j}\cap\mathcal{P}_j$. Then there exists a point $z_0\in \mathcal{P}_j$ so that for any $\tilde{q}\in Q:= \cup_{l=0}^{\infty}f^{-l}(f^k(q)) (l, k$ are non-negative integers), the Kobayashi distance $d_{\mathcal {P}_j}(z_0, \tilde{q})> C$, where $d_{\mathcal{P}_j}$ is the Kobayashi metric. In a previous paper [4], we showed that this result is not valid for attracting basins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源