论文标题
在组织病理学图像中的肿瘤分类的持续学习
Continual Learning for Tumor Classification in Histopathology Images
论文作者
论文摘要
近年来,在数字病理学应用中,在研究和临床环境中这些模型的部署日益普遍的部署来证明,在数字病理应用中的深度学习模型的开发中取得了巨大进步。尽管此类模型在解决DP应用程序中的基本计算任务方面表现出了前所未有的表现,但在适应转移学习的看不见数据时,它们遭受了灾难性的遗忘。越来越需要深度学习模型来处理不断变化的数据分布,包括不断发展的患者人群和新的诊断测定法,持续的学习模型减轻了模型忘记需要在基于DP的分析中引入的需求。但是,据我们所知,没有针对DP特定应用的此类模型进行系统的研究。在这里,我们提出了DP设置中的CL方案,其中组织病理学图像数据来自不同来源/分布,其知识已集成到单个模型中,而无需从头开始训练所有数据。然后,我们建立了一个用于结直肠癌H&E分类的增强数据集,以模拟图像外观的变化,并在拟议的CL方案中评估了CL模型性能。我们利用乳腺肿瘤H&E数据集以及结直肠癌来评估不同肿瘤类型的CL。此外,我们在注释和计算资源的限制下在线几弹性设置中评估了CL方法。我们揭示了DP应用中CL的有希望的结果,这可能为这些方法在临床实践中的应用铺平了道路。
Recent years have seen great advancements in the development of deep learning models for histopathology image analysis in digital pathology applications, evidenced by the increasingly common deployment of these models in both research and clinical settings. Although such models have shown unprecedented performance in solving fundamental computational tasks in DP applications, they suffer from catastrophic forgetting when adapted to unseen data with transfer learning. With an increasing need for deep learning models to handle ever changing data distributions, including evolving patient population and new diagnosis assays, continual learning models that alleviate model forgetting need to be introduced in DP based analysis. However, to our best knowledge, there is no systematic study of such models for DP-specific applications. Here, we propose CL scenarios in DP settings, where histopathology image data from different sources/distributions arrive sequentially, the knowledge of which is integrated into a single model without training all the data from scratch. We then established an augmented dataset for colorectal cancer H&E classification to simulate shifts of image appearance and evaluated CL model performance in the proposed CL scenarios. We leveraged a breast tumor H&E dataset along with the colorectal cancer to evaluate CL from different tumor types. In addition, we evaluated CL methods in an online few-shot setting under the constraints of annotation and computational resources. We revealed promising results of CL in DP applications, potentially paving the way for application of these methods in clinical practice.