论文标题

奇数质度的根部扩展的整数作为子线的乘积

Integers for Radical Extensions of Odd Prime Degree as Product of Subrings

论文作者

Kraemer, Julius

论文摘要

对于Odd Prime度的根部扩展K,整数的环O_K被构造为具有以下属性的子环的产物:对于O_K判别的所有Prime Divisors Q,都有一个Q-最大因素。 O_K的判别是所有因素的判别因素的最大共同除数。结果适用于相反的不正确的k的单差标准。

For a radical extension K of odd prime degree the ring O_K of integers is constructed as a product of subrings with the following property: for all prime divisors q of the discriminant of O_K there is a q-maximal factor. The discriminant of O_K is the greatest common divisor of the discriminants of all factors. The results are applied to give a criterion for the monogeneity of K where the opposite is not true.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源