论文标题
深度学习闭合模型,用于大涡模拟虚张声势周围的流量
Deep Learning Closure Models for Large-Eddy Simulation of Flows around Bluff Bodies
论文作者
论文摘要
开发并评估了用于大型涡流模拟(LES)的深度学习(DL)闭合模型,并评估在中等雷诺数处的矩形圆柱体周围的不可压缩流。近壁流量模拟仍然是空气动力建模中的一个核心挑战:分离流的预测通常不准确,而LES可能需要过时的近壁网尺寸。使用伴随PDE优化方法对DL-LES模型进行训练,以尽可能匹配直接数值模拟(DNS)数据。然后,对其进行了样本外评估(即,对于未包含在训练数据中的新长宽比和雷诺数),并将其与标准LES模型(动态Smagorinsky模型)进行了比较。 DL-LES模型的表现优于动态Smagorinsky,并且能够在相对粗糙的网格上实现准确的LES预测(从DNS网格下方采样了每个笛卡尔方向的四倍)。我们研究了DL-LES模型的准确性,以预测阻力系数,平均流量和雷诺应力。一个关键的挑战是,LES的含量是稳态流量统计。例如,时间平均的平均速度$ \ bar {u}(x)= \ displayStyle \ lim_ {t \ rightarrow \ infty} \ frac {1} {t} {t} \ int_0^t u(s,x)ds $。因此,计算稳态流量统计量需要在大量通过域的流动时间上模拟DL-LES方程。这是一个非平凡的问题,它的功能形式的功能形式是否由深神经网络定义的不稳定偏微分方程模型是否可以保持稳定且准确地在[0,\ infty)$中的$ t \。我们的结果表明,DL-LES模型在较大的物理时间跨度上是准确和稳定的,可以估算稳态统计数据,以估算速度,波动和阻力系数与空气动力学应用相关的湍流体的阻力系数。
A deep learning (DL) closure model for large-eddy simulation (LES) is developed and evaluated for incompressible flows around a rectangular cylinder at moderate Reynolds numbers. Near-wall flow simulation remains a central challenge in aerodynamic modeling: RANS predictions of separated flows are often inaccurate, while LES can require prohibitively small near-wall mesh sizes. The DL-LES model is trained using adjoint PDE optimization methods to match, as closely as possible, direct numerical simulation (DNS) data. It is then evaluated out-of-sample (i.e., for new aspect ratios and Reynolds numbers not included in the training data) and compared against a standard LES model (the dynamic Smagorinsky model). The DL-LES model outperforms dynamic Smagorinsky and is able to achieve accurate LES predictions on a relatively coarse mesh (downsampled from the DNS grid by a factor of four in each Cartesian direction). We study the accuracy of the DL-LES model for predicting the drag coefficient, mean flow, and Reynolds stress. A crucial challenge is that the LES quantities of interest are the steady-state flow statistics; for example, the time-averaged mean velocity $\bar{u}(x) = \displaystyle \lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t u(s,x) ds$. Calculating the steady-state flow statistics therefore requires simulating the DL-LES equations over a large number of flow times through the domain; it is a non-trivial question whether an unsteady partial differential equation model whose functional form is defined by a deep neural network can remain stable and accurate on $t \in [0, \infty)$. Our results demonstrate that the DL-LES model is accurate and stable over large physical time spans, enabling the estimation of the steady-state statistics for the velocity, fluctuations, and drag coefficient of turbulent flows around bluff bodies relevant to aerodynamic applications.