论文标题
无监督的3D动作表示学习的对比阳性采矿学习
Contrastive Positive Mining for Unsupervised 3D Action Representation Learning
论文作者
论文摘要
最近基于对比的3D行动表示学习取得了长足的进步。但是,严格的正/负约束尚未放松,并且使用非自我阳性的使用尚待探索。在本文中,为无监督的骨骼3D动作表示学习提出了对比呈正挖掘(CPM)框架。 CPM在上下文队列中识别非自我阳性以提高学习。具体而言,采用和培训了暹罗编码器,以匹配增强实例的相似性分布,以参考上下文队列中的所有实例。通过确定队列中的非自我积极实例,提出了一种积极增强的学习策略,以利用采矿积极因素的知识来提高学识渊博的潜在空间的鲁棒性,以抵抗阶级内和阶层间多样性。实验结果表明,所提出的CPM具有有效性,并且在具有挑战性的NTU和PKU-MMD数据集上胜过现有的最新无监督方法。
Recent contrastive based 3D action representation learning has made great progress. However, the strict positive/negative constraint is yet to be relaxed and the use of non-self positive is yet to be explored. In this paper, a Contrastive Positive Mining (CPM) framework is proposed for unsupervised skeleton 3D action representation learning. The CPM identifies non-self positives in a contextual queue to boost learning. Specifically, the siamese encoders are adopted and trained to match the similarity distributions of the augmented instances in reference to all instances in the contextual queue. By identifying the non-self positive instances in the queue, a positive-enhanced learning strategy is proposed to leverage the knowledge of mined positives to boost the robustness of the learned latent space against intra-class and inter-class diversity. Experimental results have shown that the proposed CPM is effective and outperforms the existing state-of-the-art unsupervised methods on the challenging NTU and PKU-MMD datasets.