论文标题

随机混合系统的安全屏障证书

Safety Barrier Certificates for Stochastic Hybrid Systems

论文作者

Lavaei, Abolfazl, Soudjani, Sadegh, Frazzoli, Emilio

论文摘要

这项工作与随机混合系统的安全控制器的合成有关,其中连续演变由带有布朗运动和泊松过程的随机微分方程描述,瞬时跳跃受和添加噪声的随机差异方程。我们提出的框架利用控制屏障证书的概念(CBC)作为一种无离散化方法,以合成随机混合动力系统的安全控制器,同时在有限的时间范围内提供安全保证。在我们提出的方案中,我们首先提供了一个增强框架,以表征每个随机混合系统,其中包含连续发展和瞬时跳跃,并具有覆盖这两种情况的统一系统。然后,我们为增强系统引入了增强控制障碍证书(ACBC),并提出了足够的条件,以基于原始混合系统的CBC构建ACBC。通过利用构造的ACBC,我们对随机混合系统在有限的时间范围内到达某些不安全区域的概率进行了量化上限。在非线性案例研究中验证了所提出的方法。

This work is concerned with the safety controller synthesis of stochastic hybrid systems, in which continuous evolutions are described by stochastic differential equations with both Brownian motions and Poisson processes, and instantaneous jumps are governed by stochastic difference equations with additive noises. Our proposed framework leverages the notion of control barrier certificates (CBC), as a discretization-free approach, to synthesize safety controllers for stochastic hybrid systems while providing safety guarantees in finite time horizons. In our proposed scheme, we first provide an augmented framework to characterize each stochastic hybrid system containing continuous evolutions and instantaneous jumps with a unified system covering both scenarios. We then introduce an augmented control barrier certificate (ACBC) for augmented systems and propose sufficient conditions to construct an ACBC based on CBC of original hybrid systems. By utilizing the constructed ACBC, we quantify upper bounds on the probability that the stochastic hybrid system reaches certain unsafe regions in a finite time horizon. The proposed approach is verified over a nonlinear case study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源