论文标题
热木星大气中热抗性不稳定的变异性
Variability from thermo-resistive instability in the atmospheres of hot jupiters
论文作者
论文摘要
热木星的气氛可能会受到热抗性不稳定的影响,其中随着温度增加的电导率增加导致欧姆加热。我们在热木星的赤道区域中引入了一个简化的局部动力学模型,该模型随着大气流的后背反应融合了大气流动的反应,随着增加的电导率导致通量冻结,这又会淬灭流量,从而使欧姆热加热。我们展示了一种新的时间依赖性解决方案,该解决方案是针对温度依赖的电导率出现的(而温度独立的电导率总是演变为稳态)。周期性循环由静态间隔隔开的Alfven振荡爆发组成,磁性雷诺数在小于和大于统一的值之间交替,以保持振荡。我们研究了不稳定性运行的压力和温度区域。对于在大气模型中看到的典型赤道加速度,我们在压力下发现不稳定性$ \ sim 0.1 $ - $ 1 \ {\ rm bar} $和温度$ \大约1300 $ - $ 1800 \ {\ rm k} $,用于磁场$ \ sim $ \ sim 10 \ \ \ rm g g} $。与以前基于恒定风速的研究不同,我们发现不稳定性对于较弱的磁场更强。我们的结果增加了这样的想法,即变异性应该是磁化热木星气氛的特征,尤其是在中等温度下。电导率的温度依赖性是重要成分,应包括在热木星大气动力学的MHD模型中。
The atmosphere of a hot jupiter may be subject to a thermo-resistive instability, in which the increasing electrical conductivity with temperature leads to runaway Ohmic heating. We introduce a simplified model of the local dynamics in the equatorial region of a hot jupiter that incorporates the back reaction on the atmospheric flow as the increasing electrical conductivity leads to flux freezing, which in turn quenches the flow and therefore the Ohmic heating. We demonstrate a new time-dependent solution that emerges for a temperature-dependent electrical conductivity (whereas a temperature-independent conductivity always evolves to a steady-state). The periodic cycle consists of bursts of Alfven oscillations separated by quiescent intervals, with the magnetic Reynolds number alternating between values smaller than and larger than unity, maintaining the oscillation. We investigate the regions of pressure and temperature in which the instability operates. For the typical equatorial accelerations seen in atmospheric models, we find instability at pressures $\sim 0.1$--$1\ {\rm bar}$ and temperatures $\approx 1300$--$1800\ {\rm K}$ for magnetic fields $\sim 10\ {\rm G}$. Unlike previous studies based on a constant wind velocity, we find that the instability is stronger for weaker magnetic fields. Our results add support to the idea that variability should be a feature of magnetized hot jupiter atmospheres, particularly at intermediate temperatures. The temperature-dependence of the electrical conductivity is an important ingredient that should be included in MHD models of hot jupiter atmospheric dynamics.