论文标题
队列舒适模型 - 使用乘员的相似性来预测个人热偏好的数据
Cohort comfort models -- Using occupants' similarity to predict personal thermal preference with less data
论文作者
论文摘要
我们介绍了队列舒适模型,这是一个新的框架,用于预测新乘员如何看待其热环境。队列舒适模型利用从样本人群中收集的历史数据,这些数据具有一些潜在的偏好相似性,以预测新居民的热偏好反应。我们的框架能够从新占用者以及生理和环境传感器测量值以及与热偏好响应配对的新占用者以及生理和环境传感器测量值中利用可用的背景信息,例如物理特征和一次性的登机调查(对生活量表的满意度,高度敏感的人尺度,高度五个人格特征)。我们在两个公开可用的数据集中实施了框架,其中包含来自55人的纵向数据,其中包括6,000多个单独的热舒适调查。我们观察到,使用背景信息的队列舒适模型几乎没有变化的热偏好预测性能,但没有使用历史数据。另一方面,使用队列舒适模型的每个数据集占用人群的一半和三分之一的占用人群的历史数据较少,同类舒适模型将其热偏好预测的平均值增加了8〜 \%和5〜 \%,与某些居住者相比,与某些居民相比,与某些居民相比,与总体居民相比,一些居住者的热度预测平均增加了36〜%和46〜 \%。该框架以数据和站点不可知的方式呈现,其不同的组件很容易根据乘员和建筑物的数据可用性定制。队列舒适模型可能是迈向个性化的重要一步,而无需为每个新乘员开发个性化模型。
We introduce Cohort Comfort Models, a new framework for predicting how new occupants would perceive their thermal environment. Cohort Comfort Models leverage historical data collected from a sample population, who have some underlying preference similarity, to predict thermal preference responses of new occupants. Our framework is capable of exploiting available background information such as physical characteristics and one-time on-boarding surveys (satisfaction with life scale, highly sensitive person scale, the Big Five personality traits) from the new occupant as well as physiological and environmental sensor measurements paired with thermal preference responses. We implemented our framework in two publicly available datasets containing longitudinal data from 55 people, comprising more than 6,000 individual thermal comfort surveys. We observed that, a Cohort Comfort Model that uses background information provided very little change in thermal preference prediction performance but uses none historical data. On the other hand, for half and one third of each dataset occupant population, using Cohort Comfort Models, with less historical data from target occupants, Cohort Comfort Models increased their thermal preference prediction by 8~\% and 5~\% on average, and up to 36~\% and 46~\% for some occupants, when compared to general-purpose models trained on the whole population of occupants. The framework is presented in a data and site agnostic manner, with its different components easily tailored to the data availability of the occupants and the buildings. Cohort Comfort Models can be an important step towards personalization without the need of developing a personalized model for each new occupant.