论文标题

短基线的虚拟中微子繁殖

Virtual neutrino propagation at short baselines

论文作者

Naumov, Vadim A., Shkirmanov, Dmitry S.

论文摘要

在协变性场理论方法中,波包修改的中微子传播器表示为无量纲lorentz-和旋转不变变量的渐近膨胀。该膨胀在高能量和适当的Feynman Macrodiagram顶点之间的短而宏观的时空距离处有效。就繁殖器与有效中微子波数据包之间的二元性而言,在短时间内和距离上,中微子是非常虚拟的,并且经典地移动。在最低的近似值中,这导致模量平方平方的风味过渡幅度和相关中微子诱导的事件速率的经典反向依赖性从源和检测器之间的距离$ l $,以及上述渐近渐近剂导致校正为$ l^2 $ $ l^2 $的经典行为。这与长基线制度大不相同,在$ l^2 $的渐近逆势中给出了类似的校正。但是,在短基线和长基线方案中,主要校正导致中微子事件数量减少。

Within a covariant perturbative field-theoretical approach, the wave-packet modified neutrino propagator is expressed as an asymptotic expansion in powers of dimensionless Lorentz- and rotation-invariant variables. The expansion is valid at high energies and short but macroscopic space-time distances between the vertices of the proper Feynman macrodiagram. In terms of duality between the propagator and the effective neutrino wave packet, at short times and distances, neutrinos are deeply virtual and move quasiclassically. In the lowest-order approximation, this leads to the classical inverse-square dependence of the modulus squared flavor transition amplitude and related neutrino-induced event rate from distance $L$ between the source and detector, and the above-mentioned asymptotics results in the corrections to the classical behavior represented by powers of $L^2$. This is very different from the long-baseline regime, where similar corrections are given by an asymptotic expansion in inverse powers of $L^2$. However, in both short- and long-baseline regimes, the main corrections lead to a decrease in number of neutrino events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源