论文标题

零确定策略的几何形状

The Geometry of Zero-Determinant Strategies

论文作者

Chen, Xingru, Wang, Long, Fu, Feng

论文摘要

零确定性(ZD)策略的出现重塑了迭代囚犯困境游戏中对互惠与合作的研究。 ZD策略的后果通过了他们单方面实现自己的平均收益与共同播放者之间的线性关系的能力来证明。共同的实践方便地代表了成对收益的参数图中的直线。然而,很少有人注意研究所有可允许的ZD策略的策略空间的实际几何形状。在这里,我们的工作提供了不同类别的ZD策略以及其特定参数化的非平凡的几何解释之间的直观几何关系。 ZD策略的自适应动态进一步揭示了一般ZD策略与所谓的均衡器之间的不可预见的联系,这些均衡器可以将任何同事的回报设置为固定价值。我们表明,形成超平面的均衡器类是关键平衡歧管,其中只有一部分是稳定的。同一超平面也是合作增强区域的分离,最佳响应是增加四个收益结果中的每个收益。我们的结果阐明了以前被忽略的ZD策略的简单而优雅的几何形状。

The advent of Zero-Determinant (ZD) strategies has reshaped the study of reciprocity and cooperation in the iterated Prisoner's Dilemma games. The ramification of ZD strategies has been demonstrated through their ability to unilaterally enforce a linear relationship between their own average payoff and that of their co-player. Common practice conveniently represents this relationship by a straight line in the parametric plot of pairwise payoffs. Yet little attention has been paid to studying the actual geometry of the strategy space of all admissible ZD strategies. Here, our work offers intuitive geometric relationships between different classes of ZD strategies as well as nontrivial geometric interpretations of their specific parameterizations. Adaptive dynamics of ZD strategies further reveals the unforeseen connection between general ZD strategies and the so-called equalizers that can set any co-player's payoff to a fixed value. We show that the class of equalizers forming a hyperplane is the critical equilibrium manifold, only part of which is stable. The same hyperplane is also a separatrix of the cooperation-enhancing region where the optimum response is to increase cooperation for each of the four payoff outcomes. Our results shed light on the simple but elegant geometry of ZD strategies that is previously overlooked.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源