论文标题
高光谱脉络的多发性卷积神经网络
A Multibranch Convolutional Neural Network for Hyperspectral Unmixing
论文作者
论文摘要
在分析此类数据的分析中,高光谱脉冲仍然是最具挑战性的任务之一。深度学习一直在田野上盛开,并证明要优于其他经典的不混合技术,并且可以有效部署在配备高光谱成像器的地球观察卫星上。在这封信中,我们遵循这一研究途径,并提出了一个多分支卷积神经网络,该网络受益于融合过程中的光谱,空间和光谱空间特征。我们的实验结果得到了消融研究的支持,表明我们的技术在文献中的表现优于其他人,而导致了高质量的分数丰度估计。此外,我们研究了减少训练集对所有算法及其对噪声的稳健性的影响的影响,因为捕获大型且代表性的地面套件是耗时且在实践中既耗时又昂贵的,尤其是在新兴的地球观察方面。
Hyperspectral unmixing remains one of the most challenging tasks in the analysis of such data. Deep learning has been blooming in the field and proved to outperform other classic unmixing techniques, and can be effectively deployed onboard Earth observation satellites equipped with hyperspectral imagers. In this letter, we follow this research pathway and propose a multi-branch convolutional neural network that benefits from fusing spectral, spatial, and spectral-spatial features in the unmixing process. The results of our experiments, backed up with the ablation study, revealed that our techniques outperform others from the literature and lead to higher-quality fractional abundance estimation. Also, we investigated the influence of reducing the training sets on the capabilities of all algorithms and their robustness against noise, as capturing large and representative ground-truth sets is time-consuming and costly in practice, especially in emerging Earth observation scenarios.