论文标题
快速生产金属合金的精确嵌入式原子方法电位
Rapid Production of Accurate Embedded-Atom Method Potentials for Metal Alloys
论文作者
论文摘要
广泛使用经典分子动力学用于合金设计的关键局限性是合适的原子间电位的有限可用性。在这里,我们介绍了一种快速合金方法,用于产生准确的一般经验势或横冲直撞,这是一种计算经济的程序,用于从已经存在的单一元素电位中生成二进制嵌入式原子模型电位,可以进一步合并到多组分分量中。我们介绍了使用二元AG-AL和三元Ag-Au-Cu作为案例研究的横冲直撞校准Finnis-Sinclair型EAM电位的质量。我们证明,与其他合金电位相比,横冲直撞电势可以以更高的精度重现大量性质和力。在某些模拟中,可以观察到优化的交叉相互作用的质量可以超过原始的现成元素电位输入的质量。
A critical limitation to the wide-scale use of classical molecular dynamics for alloy design is the limited availability of suitable interatomic potentials. Here, we introduce the Rapid Alloy Method for Producing Accurate General Empirical Potentials or RAMPAGE, a computationally economical procedure to generate binary embedded-atom model potentials from already-existing single-element potentials that can be further combined into multi-component alloy potentials. We present the quality of RAMPAGE calibrated Finnis-Sinclair type EAM potentials using binary Ag-Al and ternary Ag-Au-Cu as case studies. We demonstrate that RAMPAGE potentials can reproduce bulk properties and forces with greater accuracy than that of other alloy potentials. In some simulations, it is observed the quality of the optimized cross interactions can exceed that of the original off-the-shelf elemental potential inputs.