论文标题
大规模建筑损害评估使用卫星图像上的新型层次变压器结构
Large-scale Building Damage Assessment using a Novel Hierarchical Transformer Architecture on Satellite Images
论文作者
论文摘要
本文介绍了\ dahitra,这是一种具有分层变压器的新型深度学习模型,可在自然灾害后根据卫星图像对建筑物的损害进行分类。卫星图像提供了实时和高覆盖的信息,并提供了向大规模污点后建筑物损害评估提供信息的机会,这对于快速应急响应至关重要。在这项工作中,提出了一个基于变压器的新型网络来评估建筑物的损失。该网络利用了多种分辨率的层次空间特征,并在将变压器编码器应用于空间特征后捕获特征域的时间差异。当在大规模灾难损坏数据集(XBD)上测试以构建本地化和损坏分类以及在Levir-CD数据集上进行大规模灾难损坏数据集(XBD)测试时,该网络可实现最先进的性能。此外,这项工作还引入了一个新的高分辨率卫星图像数据集,IDA-BD(与2021年路易斯安那州的2021年飓风IDA有关),以进行域名适应。此外,它证明了一种通过有限的微调调整模型来调整模型,从而将模型应用于具有稀缺数据的新损坏的区域的方法。
This paper presents \dahitra, a novel deep-learning model with hierarchical transformers to classify building damages based on satellite images in the aftermath of natural disasters. Satellite imagery provides real-time and high-coverage information and offers opportunities to inform large-scale post-disaster building damage assessment, which is critical for rapid emergency response. In this work, a novel transformer-based network is proposed for assessing building damage. This network leverages hierarchical spatial features of multiple resolutions and captures the temporal differences in the feature domain after applying a transformer encoder on the spatial features. The proposed network achieves state-of-the-art performance when tested on a large-scale disaster damage dataset (xBD) for building localization and damage classification, as well as on LEVIR-CD dataset for change detection tasks. In addition, this work introduces a new high-resolution satellite imagery dataset, Ida-BD (related to 2021 Hurricane Ida in Louisiana in 2021) for domain adaptation. Further, it demonstrates an approach of using this dataset by adapting the model with limited fine-tuning and hence applying the model to newly damaged areas with scarce data.