论文标题
矩形 - 三角形软性晶格晶体,带有六角形对称性
Rectangle--triangle soft-matter quasicrystals with hexagonal symmetry
论文作者
论文摘要
可以从例如风筝和飞镖,正方形和等边三角形,菱形或盾形瓷砖,并且可以具有多种不同的对称性。但是,几乎所有出现在软性物质中的准晶体都是十二型的。在这里,我们研究了基于矩形和两种等边三角形类型的六角形对称性的一类六角形对称性。我们展示了如何设计通过配对电位相互作用的颗粒系统的软性系统,这些系统包含两个长度尺度,这些长度尺度构成了具有两个不同的矩形示例 - 三角形瓷砖的稳定状态。其中一个是青铜均值的瓷砖,而另一个是概括。我们的工作指出,如何以软态设计更一般的(超越十二杆)准晶体。
Aperiodic (quasicrystalline) tilings, such as Penrose's tiling, can be built up from e.g. kites and darts, squares and equilateral triangles, rhombi or shield shaped tiles and can have a variety of different symmetries. However, almost all quasicrystals occurring in soft-matter are of the dodecagonal type. Here, we investigate a class of aperiodic tilings with hexagonal symmetry that are based on rectangles and two types of equilateral triangles. We show how to design soft-matter systems of particles interacting via pair potentials containing two length-scales that form aperiodic stable states with two different examples of rectangle--triangle tilings. One of these is the bronze-mean tiling, while the other is a generalization. Our work points to how more general (beyond dodecagonal) quasicrystals can be designed in soft-matter.