论文标题
在可编程光子量子处理器上积极学习
Active Learning on a Programmable Photonic Quantum Processor
论文作者
论文摘要
培训量子机学习模型通常需要大型标记的数据集,这会产生高标签和计算成本。为了降低这种成本,一种称为主动学习(AL)的选择性培训策略,仅选择原始数据集的一个子集,同时保持训练有素的模型的性能。在这里,我们设计并实施了两个具有AL能力的变分量子分类器,以研究AL在量子机学习中的潜在应用和有效性。首先,我们构建了一个可编程的自由空间光子量子处理器,该处理器可以实现各种混合量子量子计算算法的编程实现。然后,我们将设计的变分量子分类器与Al编码为量子处理器,并对有或没有AL策略的分类器进行比较测试。结果验证了AL在量子机学习中的巨大优势,因为它最多节省了$ 85 \%$标签工作和$ 91.6 \%$ $%的计算工作,而没有AL在数据分类任务的情况下进行培训。我们的结果激发了AL在大规模量子机学习中的进一步应用,以大大减少训练数据并加快训练的速度,这是对量子物理或现实应用应用中实用量子优势的探索。
Training a quantum machine learning model generally requires a large labeled dataset, which incurs high labeling and computational costs. To reduce such costs, a selective training strategy, called active learning (AL), chooses only a subset of the original dataset to learn while maintaining the trained model's performance. Here, we design and implement two AL-enpowered variational quantum classifiers, to investigate the potential applications and effectiveness of AL in quantum machine learning. Firstly, we build a programmable free-space photonic quantum processor, which enables the programmed implementation of various hybrid quantum-classical computing algorithms. Then, we code the designed variational quantum classifier with AL into the quantum processor, and execute comparative tests for the classifiers with and without the AL strategy. The results validate the great advantage of AL in quantum machine learning, as it saves at most $85\%$ labeling efforts and $91.6\%$ percent computational efforts compared to the training without AL on a data classification task. Our results inspire AL's further applications in large-scale quantum machine learning to drastically reduce training data and speed up training, underpinning the exploration of practical quantum advantages in quantum physics or real-world applications.