论文标题

通过凸优化界定平面图中奇数路径的数量

Bounding the number of odd paths in planar graphs via convex optimization

论文作者

Antonir, Asaf Cohen, Shapira, Asaf

论文摘要

令$ n _ {\ mathcal {p}}(n,h)$表示$ n $顶点平面图中$ h $的最大副本数。自70年代以来,已经对各种图$ h $界限此功能的问题进行了广泛的研究。最近受到很多关注的特殊情况是,$ h $是$ 200万美元+1 $顶点的路径,表示为$ p_ {2m+1} $。本文我们的主要结果是$ n _ {\ Mathcal {p}}(n,p_ {2m+1})= o(m^{ - m} n^{m+1})\;。以及考克斯和马丁。证明使用图理论参数以及凸优化理论的(简单)参数。

Let $N_{\mathcal{P}}(n,H)$ denote the maximum number of copies of $H$ in an $n$ vertex planar graph. The problem of bounding this function for various graphs $H$ has been extensively studied since the 70's. A special case that received a lot of attention recently is when $H$ is the path on $2m+1$ vertices, denoted $P_{2m+1}$. Our main result in this paper is that $$ N_{\mathcal{P}}(n,P_{2m+1})=O(m^{-m}n^{m+1})\;.$$ This improves upon the previously best known bound by a factor $e^{m}$, which is best possible up to the hidden constant, and makes a significant step towards resolving conjectures of Gosh et al. and of Cox and Martin. The proof uses graph theoretic arguments together with (simple) arguments from the theory of convex optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源