论文标题

Astrovision:使用深度学习迈向自主特征检测和描述对小身体的任务

AstroVision: Towards Autonomous Feature Detection and Description for Missions to Small Bodies Using Deep Learning

论文作者

Driver, Travis, Skinner, Katherine, Dor, Mehregan, Tsiotras, Panagiotis

论文摘要

小天体的任务在很大程度上依赖于光学特征跟踪,以表征目标主体周围的相对导航和相对导航。尽管深度学习导致了功能检测和描述方面的巨大进步,但由于大规模,带注释的数据集的可用性有限,因此培训和验证了空间应用程序的数据驱动模型具有挑战性。本文介绍了Astrovision,这是一个大规模数据集,该数据集由115,970个密集注释的,真实的图像组成,这些图像是过去和正在进行的任务中捕获的16个不同物体的真实图像。我们利用Astrovision开发一组标准化基准,并对手工和数据驱动的功能检测和描述方法进行详尽的评估。接下来,我们采用Astrovision对最先进的,深刻的功能检测和描述网络进行端到端培训,并在多个基准测试中表现出改善的性能。将公开使用完整的基准管道和数据集,以促进用于空间应用程序的计算机视觉算法的发展。

Missions to small celestial bodies rely heavily on optical feature tracking for characterization of and relative navigation around the target body. While deep learning has led to great advancements in feature detection and description, training and validating data-driven models for space applications is challenging due to the limited availability of large-scale, annotated datasets. This paper introduces AstroVision, a large-scale dataset comprised of 115,970 densely annotated, real images of 16 different small bodies captured during past and ongoing missions. We leverage AstroVision to develop a set of standardized benchmarks and conduct an exhaustive evaluation of both handcrafted and data-driven feature detection and description methods. Next, we employ AstroVision for end-to-end training of a state-of-the-art, deep feature detection and description network and demonstrate improved performance on multiple benchmarks. The full benchmarking pipeline and the dataset will be made publicly available to facilitate the advancement of computer vision algorithms for space applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源