论文标题

通过同时在线双平均值计算拍卖游戏中贝叶斯纳什均衡策略

Computing Bayes Nash Equilibrium Strategies in Auction Games via Simultaneous Online Dual Averaging

论文作者

Bichler, Martin, Fichtl, Maximilian, Oberlechner, Matthias

论文摘要

拍卖被建模为具有连续类型和动作空间的贝叶斯游戏。一般而言,在拍卖游戏中确定平衡在计算上是很难的,并且没有确切的解决方案理论。我们介绍了一个算法框架,在该算法中,我们将类型和动作空间离散,然后通过在线优化算法学习分配策略。分配策略的一个优点是,我们不必对投标函数的形状做出任何假设。此外,代理商的预期效用在策略中是线性的。因此,如果我们的优化算法收敛到纯策略,那么它们会以高精度收敛到离散游戏的近似平衡。重要的是,我们表明,离散游戏的平衡近似于连续游戏中的平衡。在各种拍卖游戏中,我们提供了经验证据,表明该方法紧密近似于分析(纯)NASH平衡。这种速度和精度是显着的,因为在许多有限的游戏中,学习动态不会融合甚至混乱。在代理是对称的标准模型中,我们在几秒钟内发现平衡。尽管我们专注于双重平均,但我们表明,即使离散的游戏既不满足单调性和全球变化稳定性,否则总体方法与正规器和替代在线凸优化方法的收敛性相似。该方法允许相互依存的估值和不同类型的实用程序功能,并为广泛适用的平衡求解器奠定了基础,这些平衡求解器可以在拍卖市场及其他地区推动平衡分析的边界。

Auctions are modeled as Bayesian games with continuous type and action spaces. Determining equilibria in auction games is computationally hard in general and no exact solution theory is known. We introduce an algorithmic framework in which we discretize type and action space and then learn distributional strategies via online optimization algorithms. One advantage of distributional strategies is that we do not have to make any assumptions on the shape of the bid function. Besides, the expected utility of agents is linear in the strategies. It follows that if our optimization algorithms converge to a pure strategy, then they converge to an approximate equilibrium of the discretized game with high precision. Importantly, we show that the equilibrium of the discretized game approximates an equilibrium in the continuous game. In a wide variety of auction games, we provide empirical evidence that the approach approximates the analytical (pure) Bayes Nash equilibrium closely. This speed and precision is remarkable, because in many finite games learning dynamics do not converge or are even chaotic. In standard models where agents are symmetric, we find equilibrium in seconds. While we focus on dual averaging, we show that the overall approach converges independent of the regularizer and alternative online convex optimization methods achieve similar results, even though the discretized game neither satisfies monotonicity nor variational stability globally. The method allows for interdependent valuations and different types of utility functions and provides a foundation for broadly applicable equilibrium solvers that can push the boundaries of equilibrium analysis in auction markets and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源