论文标题

具有结构化协方差矩阵的线性模型中的S估计

S-estimation in Linear Models with Structured Covariance Matrices

论文作者

Lopuhaä, Hendrik Paul, Gares, Valerie, Ruiz-Gazen, Anne

论文摘要

我们在具有结构化协方差矩阵的平衡线性模型中提供了统一的S估计方法。主要感兴趣的是线性混合效应模型的S估计器,但是我们的方法还包括其他几种标准多元模型中的S估计器,例如多元回归,多元回归以及多元位置和分散。我们为存在S功能和S估计剂的存在提供了足够的条件,建立渐近特性,例如一致性和渐近正态性,并根据分解点和影响功能来获得其稳健性。所有结果均可用于通用可识别的协方差结构,并在温和条件下建立在观测值的分布下,这远远超出了具有椭圆形构成密度的模型。我们的一些结果是新的,其他结果比文献中的现有结果更一般。通过这种方式,此手稿完成并改善了各种多元模型中S估计的结果。我们通过模拟研究来说明我们的结果,并应用于有关铅暴露儿童治疗的试验的数据。

We provide a unified approach to S-estimation in balanced linear models with structured covariance matrices. Of main interest are S-estimators for linear mixed effects models, but our approach also includes S-estimators in several other standard multivariate models, such as multiple regression, multivariate regression, and multivariate location and scatter. We provide sufficient conditions for the existence of S-functionals and S-estimators, establish asymptotic properties such as consistency and asymptotic normality, and derive their robustness properties in terms of breakdown point and influence function. All the results are obtained for general identifiable covariance structures and are established under mild conditions on the distribution of the observations, which goes far beyond models with elliptically contoured densities. Some of our results are new and others are more general than existing ones in the literature. In this way this manuscript completes and improves results on S-estimation in a wide variety of multivariate models. We illustrate our results by means of a simulation study and an application to data from a trial on the treatment of lead-exposed children.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源