论文标题

通过频谱图小波理论分析马萨诸塞州Covid-19的时空动力学

Analysis of the Spatio-temporal Dynamics of COVID-19 in Massachusetts via Spectral Graph Wavelet Theory

论文作者

Geng, Ru, Gao, Yixian, Zhang, Hongkun, Zu, Jian

论文摘要

Covid-19疾病的迅速传播对世界产生了重大影响。在本文中,我们研究了Covid-199的数据解释和可视化,使用开放数据源从2020年12月6日至2021年9月25日,在马萨诸塞州的351个城市和城镇中研究。马萨诸塞州。使用光谱图小波变换(SGWT),我们在动态图上处理COVID-19数据,这使我们能够设计有效的工具,以分析和检测大流行扩散中的时空模式。我们设计了一种新的节点分类方法,该方法有效地基于光谱图小波系数确定了异常城市。它可以协助政府或公共卫生组织监测大流行的传播和制定预防措施。与大多数关注确认病例随着时间的演变的工作不同,我们关注城市之间大流行进化的时空模式。通过数据分析和可视化,可以获得对城市一级流行病学发展的更好理解,并且可以对城市特定的监视有所帮助。

The rapid spread of COVID-19 disease has had a significant impact on the world. In this paper, we study COVID-19 data interpretation and visualization using open-data sources for 351 cities and towns in Massachusetts from December 6, 2020 to September 25, 2021. Because cities are embedded in rather complex transportation networks, we construct the spatio-temporal dynamic graph model, in which the graph attention neural network is utilized as a deep learning method to learn the pandemic transition probability among major cities in Massachusetts. Using the spectral graph wavelet transform (SGWT), we process the COVID-19 data on the dynamic graph, which enables us to design effective tools to analyze and detect spatio-temporal patterns in the pandemic spreading. We design a new node classification method, which effectively identifies the anomaly cities based on spectral graph wavelet coefficients. It can assist administrations or public health organizations in monitoring the spread of the pandemic and developing preventive measures. Unlike most work focusing on the evolution of confirmed cases over time, we focus on the spatio-temporal patterns of pandemic evolution among cities. Through the data analysis and visualization, a better understanding of the epidemiological development at the city level is obtained and can be helpful with city-specific surveillance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源