论文标题
聚类聚类i:四边形小载体
Cluster Polylogarithms I: Quadrangular Polylogarithms
论文作者
论文摘要
我们建议在任意群集品种上的群集聚集体的定义,并将其分类为$ a $。我们找到了多个小聚集体的功能方程,这些方程将Abel,Kummer和Goncharov发现的方程式概括为任意权重。作为一种应用,我们证明了重量为六的Goncharov深度猜想的一部分。
We suggest a definition of cluster polylogarithms on an arbitrary cluster variety and classify them in type $A$. We find functional equations for multiple polylogarithms which generalize equations discovered by Abel, Kummer, and Goncharov to an arbitrary weight. As an application, we prove a part of the Goncharov depth conjecture in weight six.