论文标题

用于声学场景分类的低复杂性CNN

Low-complexity CNNs for Acoustic Scene Classification

论文作者

Singh, Arshdeep, King, James A, Liu, Xubo, Wang, Wenwu, Plumbley, Mark D.

论文摘要

该技术报告描述了surreyaudioteam22s Dcase 2022 ASC任务1的提交,低复杂性声学场景分类(ASC)。该任务有两个规则,(a)ASC框架应具有最大128K参数,并且(b)每个推理最多应有3000万次多功能操作(MAC)。在本报告中,我们为ASC提供了遵循该任务的规则的ASC的低复杂系统。

This technical report describes the SurreyAudioTeam22s submission for DCASE 2022 ASC Task 1, Low-Complexity Acoustic Scene Classification (ASC). The task has two rules, (a) the ASC framework should have maximum 128K parameters, and (b) there should be a maximum of 30 millions multiply-accumulate operations (MACs) per inference. In this report, we present low-complexity systems for ASC that follow the rules intended for the task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源