论文标题

定期抽象的凸函数相对于Lipschitz连续凹功能的函数

Regularly abstract convex functions with respect to the set of Lipschitz continuous concave functions

论文作者

Gorokhovik, Valentin V.

论文摘要

本文的目的是研究特定类别的定期$ {\ Mathcal {h}} $ - 凸功能,当$ {\ Mathcal {h}} $是集合$ {\ Mathcal {l Mathcal {l} \ wideHat {c}}}}(c}}}}(x,x,x,x,x,x,\ sellip {在实际规范空间$ x $上定义的功能。对于扩展实现的函数,$ f:x \ mapsto \ edropline {\ mathbb {r}} $ to $ {\ mathcal {l} \ wideHat {c}} $ - convex $ convex是必要的,并且足以使$ f $ for Lower secontimontiNCONTINCINCONTINCINCONTINC lips libs lipschitz contrunctuniquy lipschitz contructuniquy foockituniques unctionuctuniques unctionuctuniques unctigucous foockuniques unctigucous;此外,每个$ {\ Mathcal {l} \ wideHat {c}} $ - convex函数定期为$ {\ MATHCAL {l} \ wideHat {c}}} $ coNvex。我们专注于$ {\ Mathcal {l} \ wideHat {c}} $ - 在给定点处函数的细分性。我们证明,$ {\ Mathcal {l} \ wideHat {c}} $ - cONVEX函数的一组点是$ {\ Mathcal {l} \ wideHat {c}}} $ - 可分辨的有效域是密集的。使用子集$ {\ MATHCAL {l} \ wideHat {c}}_θ$的集合$ {\ Mathcal {\ Mathcal {l} \ wideHat {c}} $由这样的Lipschitz连续倒下的功能组成,这些功能在起源中消失了,我们介绍了我们介绍$ {\ Mathcal {l} \ wideHat {c}}_θ$ -Subgradient和$ {\ MathCal {l} \ wideHat {c}}_θ$ -subdifferential a函数的函数的函数,该函数的一般性概述的类别conve convex分析的相应概念。抽象$ {\ MATHCAL {l} \ widecheck {c}} $ - 浓缩和$ {\ Mathcal {l} \ widecheck {c}} $ - superdifferentibles的对称概念 - {\ Mathcal {l} \ widecheck {c}}}(x,{\ mathbb {r}})$是Lipschitz连续凸功能的集合。 $ {\ Mathcal {l} \ wideHat {c}}_θ$ -subDifferentials以及$ {\ Mathcal {l} \ wideHat {c}}_θ$ -Subdifferential条件的某些属性和简单的微积分规则。

The goal of the paper is to study the particular class of regularly ${\mathcal{H}}$-convex functions, when ${\mathcal{H}}$ is the set ${\mathcal{L}\widehat{C}}(X,{\mathbb{R}})$ of real-valued Lipschitz continuous classically concave functions defined on a real normed space $X$. For an extended-real-valued function $f:X \mapsto \overline{\mathbb{R}}$ to be ${\mathcal{L}\widehat{C}}$-convex it is necessary and sufficient that $f$ be lower semicontinuous and bounded from below by a Lipschitz continuous function; moreover, each ${\mathcal{L}\widehat{C}}$-convex function is regularly ${\mathcal{L}\widehat{C}}$-convex as well. We focus on ${\mathcal{L}\widehat{C}}$-subdifferentiability of functions at a given point. We prove that the set of points at which an ${\mathcal{L}\widehat{C}}$-convex function is ${\mathcal{L}\widehat{C}}$-subdifferentiable is dense in its effective domain. Using the subset ${\mathcal{L}\widehat{C}}_θ$ of the set ${\mathcal{L}\widehat{C}}$ consisting of such Lipschitz continuous concave functions that vanish at the origin we introduce the notions of ${\mathcal{L}\widehat{C}}_θ$-subgradient and ${\mathcal{L}\widehat{C}}_θ$-subdifferential of a function at a point which generalize the corresponding notions of the classical convex analysis. Symmetric notions of abstract ${\mathcal{L}\widecheck{C}}$-concavity and ${\mathcal{L}\widecheck{C}}$-superdifferentiability of functions where ${\mathcal{L}\widecheck{C}}:= {\mathcal{L}\widecheck{C}}(X,{\mathbb{R}})$ is the set of Lipschitz continuous convex functions are also considered. Some properties and simple calculus rules for ${\mathcal{L}\widehat{C}}_θ$-subdifferentials as well as ${\mathcal{L}\widehat{C}}_θ$-subdifferential conditions for global extremum points are established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源