论文标题
通过电子显微镜图像中空腔的自动语义分割揭示了材料肿胀
Materials Swelling Revealed Through Automated Semantic Segmentation of Cavities in Electron Microscopy Images
论文作者
论文摘要
准确地量化经过辐照的合金的肿胀对于理解核反应堆的合金性能至关重要,对于反应堆设施的安全可靠运行至关重要。然而,典型的实践是用于辐射引起的缺陷,这些缺陷是由域 - 专家研究人员手动量化的合金的电子显微镜图像。在这里,我们使用蒙版区域卷积神经网络(Mask R-CNN)模型采用端到端深度学习方法来检测和量化辐照合金中的纳米级腔。我们已经组装了迄今为止最大的标记腔图像数据库,其中包括400张图像,> 34K离散的腔体以及许多合金组成和辐照条件。我们已经评估了模型性能的统计学(精度,回忆和F1分数)和材料中心的材料中心(腔大小,密度和肿胀)指标,并对材料肿胀评估进行了深入分析。我们发现我们的模型对材料肿胀的评估具有平均(标准偏差)的平均绝对误差(基于随机放出的交叉验证为0.30(0.03)%肿胀)。该结果表明我们的方法可以按照图像和每条件准确地提供肿胀指标,从而可以为材料设计(例如,合金细化)和服务条件(例如温度,辐照剂量)对肿胀的影响提供有益的见解。最后,我们发现有一些统计指标差的测试图像案例,但肿胀的小错误表明,需要超越基于传统的基于分类的指标来评估物料域应用程序中的对象检测模型。
Accurately quantifying swelling of alloys that have undergone irradiation is essential for understanding alloy performance in a nuclear reactor and critical for the safe and reliable operation of reactor facilities. However, typical practice is for radiation-induced defects in electron microscopy images of alloys to be manually quantified by domain-expert researchers. Here, we employ an end-to-end deep learning approach using the Mask Regional Convolutional Neural Network (Mask R-CNN) model to detect and quantify nanoscale cavities in irradiated alloys. We have assembled the largest database of labeled cavity images to date, which includes 400 images, >34k discrete cavities, and numerous alloy compositions and irradiation conditions. We have evaluated both statistical (precision, recall, and F1 scores) and materials property-centric (cavity size, density, and swelling) metrics of model performance, and performed in-depth analysis of materials swelling assessments. We find our model gives assessments of material swelling with an average (standard deviation) swelling mean absolute error based on random leave-out cross-validation of 0.30 (0.03) percent swelling. This result demonstrates our approach can accurately provide swelling metrics on a per-image and per-condition basis, which can provide helpful insight into material design (e.g., alloy refinement) and impact of service conditions (e.g., temperature, irradiation dose) on swelling. Finally, we find there are cases of test images with poor statistical metrics, but small errors in swelling, pointing to the need for moving beyond traditional classification-based metrics to evaluate object detection models in the context of materials domain applications.