论文标题
沮丧的尖晶石Znfe $ _2 $ o $ _4 $的磁相关直接可视化磁相关性
Direct visualization of magnetic correlations in frustrated spinel ZnFe$_2$O$_4$
论文作者
论文摘要
带有尖晶石结构($^{2+} $ b $^{3+} _ 2 $ o $ $^4 $)的磁性材料构成了许多磁性设备的核心,但是Znfe $ _2 $ o $ $ _4 $构成了一个特殊的示例,其中磁性的性质仍未得到解决。敏感性测量结果显示出左右的尖t_c = 13 \; \ Mathrm {k} $类似于反铁磁性过渡,尽管确定为$θ_{cw} = 102.8(1)\; \; \ m atrm {k} $。与峰位置的频率依赖性以及低于$ t_c $的非零假想组件的频率依赖性,在$ t_c $下方的现场冷却和零视野冷却数据的分叉化表明,它实际上与旋转玻璃过渡相关。来自单晶的高度结构化的磁性弥漫性中子散射在$ 50 \; \ mathrm {k} $和$ 25 \; \ mathrm {k} $之间揭示了与自然界相关的磁性障碍的存在。在这里,3D-M $δ$ PDF方法用于可视化局部磁有序偏好,而铁磁最近的邻居和抗磁性第三次最近邻近的相关性显示为主导。它们的温度依赖性非常非同,有些符号翻转,相关长度有很大变化。相关性可以通过磁途径的轨道相互作用机制和首选的自旋簇来解释。我们的研究证明了3D-M $δ$ PDF方法在可视化复杂量子现象方面的功能,从而提供了一种方法来获得对磁性挫败感的原子量规模的理解。
Magnetic materials with the spinel structure (A$^{2+}$B$^{3+}_2$O$^4$) form the core of numerous magnetic devices, but ZnFe$_2$O$_4$ constitutes a peculiar example where the nature of the magnetism is still unresolved. Susceptibility measurements revealed a cusp around $T_c=13\;\mathrm{K}$ resembling an antiferromagnetic transition, despite the positive Curie-Weiss temperature determined to be $Θ_{CW}=102.8(1)\;\mathrm{K}$. Bifurcation of field-cooled and zero-field-cooled data below $T_c$ in conjunction with a frequency dependence of the peak position and a non-zero imaginary component below $T_c$ shows it is in fact associated with a spin-glass transition. Highly structured magnetic diffuse neutron scattering from single crystals develops between $50\;\mathrm{K}$ and $25\;\mathrm{K}$ revealing the presence of magnetic disorder which is correlated in nature. Here, the 3D-m$Δ$PDF method is used to visualize the local magnetic ordering preferences, and ferromagnetic nearest-neighbor and antiferromagnetic third nearest-neighbor correlations are shown to be dominant. Their temperature dependence is extraordinary with some flipping in sign, and a strongly varying correlation length. The correlations can be explained by orbital interaction mechanisms for the magnetic pathways, and a preferred spin cluster. Our study demonstrates the power of the 3D-m$Δ$PDF method in visualizing complex quantum phenomena thereby providing a way to obtain an atomic scale understanding of magnetic frustration.