论文标题

原子上尖锐,封闭的双层磷烯边缘通过自passiveation

Atomically Sharp, Closed Bilayer Phosphorene Edges by Self-Passivation

论文作者

Lee, Sol, Lee, Yangjin, Ding, Li Ping, Lee, Kihyun, Ding, Feng, Kim, Kwanpyo

论文摘要

二维(2D)晶体的边缘结构不仅会影响其整体特性,而且还决定了由于边缘介导的合成和蚀刻过程而导致的形成。必须仔细检查边缘,因为它们通常在原子尺度上显示复杂的意外特征,例如重建,功能化和不受控制的污染。在这里,我们检查了原子尺度的边缘结构,并发现双层磷烯中的重建行为。我们在升高温度下使用磷烯/石墨烯标本的原位透射电子显微镜(TEM),以最大程度地减少表面污染并减少电子束损伤,从而使我们观察到内在的边缘构型。在电子束照射下发现双层曲折(ZZ)边缘是最稳定的边缘构型。通过在各种倾斜和散焦条件下的第一原理计算和TEM图像分析,我们发现双层ZZ边缘经历边缘重建,因此获得了封闭的,自动化的边缘配置。封闭双层ZZ边缘的极低的地层能及其对电子束照射的高稳定性通过第一原理计算证实。此外,我们制造具有原子闭合ZZ边缘的双层磷纳米骨。已识别的双层ZZ边缘将有助于对磷烯和相关结构的合成,降解,重建和应用的基本理解。

Two-dimensional (2D) crystals' edge structures not only influence their overall properties but also dictate their formation due to edge-mediated synthesis and etching processes. Edges must be carefully examined because they often display complex, unexpected features at the atomic scale, such as reconstruction, functionalization, and uncontrolled contamination. Here, we examine atomic-scale edge structures and uncover reconstruction behavior in bilayer phosphorene. We use in situ transmission electron microscopy (TEM) of phosphorene/graphene specimens at elevated temperatures to minimize surface contamination and reduce e-beam damage, allowing us to observe intrinsic edge configurations. Bilayer zigzag (ZZ) edge was found the most stable edge configuration under e-beam irradiation. Through first-principles calculations and TEM image analysis under various tilting and defocus conditions, we find that bilayer ZZ edges undergo edge reconstruction and so acquire closed, self-passivated edge configurations. The extremely low formation energy of the closed bilayer ZZ edge and its high stability against e-beam irradiation are confirmed by first-principles calculations. Moreover, we fabricate bilayer phosphorene nanoribbons with atomically-sharp closed ZZ edges. The identified bilayer ZZ edges will aid in the fundamental understanding of the synthesis, degradation, reconstruction, and applications of phosphorene and related structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源