论文标题

NAPA:用于变分量子算法的中级差异天然脉冲ansatz

NAPA: Intermediate-level Variational Native-pulse Ansatz for Variational Quantum Algorithms

论文作者

Liang, Zhiding, Cheng, Jinglei, Ren, Hang, Wang, Hanrui, Hua, Fei, Song, Zhixin, Ding, Yongshan, Chong, Fred, Han, Song, Qian, Xuehai, Shi, Yiyu

论文摘要

变异量子算法(VQA)在嘈杂的中间尺度量子(NISQ)时代表现出巨大的潜力。在VQA的工作流程中,Ansatz的参数迭代更新以近似所需的量子状态。我们已经看到了各种努力,以较少的大门起草更好的安萨兹。有些作品考虑了基础电路的物理含义,而另一些作品则采用神经体系结构搜索(NAS)的思想。但是,这些设计并不能利用VQA的全部优势。因为大多数技术靶向门ansatz,并且参数通常是门的旋转角度。在量子计算机中,栅极Ansatz最终将转换为控制信号,例如超导Qubits上的微波脉冲。这些对照脉冲需要精心设计的校准,以最大程度地减少诸如过度旋转和旋转不足之类的误差。在VQA的情况下,此过程将引入冗余,但是VQA的变异性质自然可以通过更新幅度和频率参数来处理过度旋转和重组的问题。因此,我们提出了NAPA,这是一种用于VQA的天然脉冲ANSATZ GENTARATOR框架。我们生成具有可训练参数的天然脉 - 脉冲ANSATZ,用于振幅和频率。在我们提出的NAPA中,我们正在调整参数脉冲,这些脉冲在NISQ计算机上得到了本地支持。鉴于基于梯度的优化器可用于脉冲级量子程序,因此我们选择在框架中部署非级别优化器。为了限制发送给优化器的参数数量,我们采用了一种生成本机 - 脉冲ANSATZ的渐进方法。实验是在模拟器和量子设备上进行的,以评估我们的方法,以评估我们的方法。

Variational quantum algorithms (VQAs) have demonstrated great potentials in the Noisy Intermediate Scale Quantum (NISQ) era. In the workflow of VQA, the parameters of ansatz are iteratively updated to approximate the desired quantum states. We have seen various efforts to draft better ansatz with less gates. Some works consider the physical meaning of the underlying circuits, while others adopt the ideas of neural architecture search (NAS) for ansatz generator. However, these designs do not exploit the full advantages of VQAs. Because most techniques target gate ansatz, and the parameters are usually rotation angles of the gates. In quantum computers, the gate ansatz will eventually be transformed into control signals such as microwave pulses on superconducting qubits. These control pulses need elaborate calibrations to minimize the errors such as over-rotation and under-rotation. In the case of VQAs, this procedure will introduce redundancy, but the variational properties of VQAs can naturally handle problems of over-rotation and under-rotation by updating the amplitude and frequency parameters. Therefore, we propose NAPA, a native-pulse ansatz generator framework for VQAs. We generate native-pulse ansatz with trainable parameters for amplitudes and frequencies. In our proposed NAPA, we are tuning parametric pulses, which are natively supported on NISQ computers. Given the limited availability of gradient-based optimizers for pulse-level quantum programs, we choose to deploy non-gradient optimizers in our framework. To constrain the number of parameters sent to the optimizer, we adopt a progressive way to generate our native-pulse ansatz. Experiments are conducted on both simulators and quantum devices for Variational Quantum Eigensolver (VQE) tasks to evaluate our methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源