论文标题
Al2CA-TWIN边界和位错的氧气首选腐蚀途径
Preferred corrosion pathways for oxygen in Al2Ca-twin boundaries and dislocations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
With an ongoing discussion on the oxygen diffusion along crystal defects remaining, it is difficult to study this phenomenon in Al containing intermetallic materials due to its rapid and passivating oxide formation. We report here the observation of enhanced oxygen diffusion along crystal defects, i.e. dislocations and twin boundaries, in the C15 Al 2 Ca Laves phase and how the presence of oxygen induces structural changes at these defects. Three main phases were identified and characterized structurally by aberration-corrected, atomic resolution scanning transmission electron microscopy, analytically by energy dispersive X-ray spectroscopy and electron energy loss spectroscopy. Unlike the C15 bulk phase, the twin boundary and dislocation transformed into a few nanometer wide amorphous phase, which depletes in Al and Ca but is highly enriched in oxygen. The dislocation even shows coexistence of the amorphous phase with a simple Al-rich A1 fcc phase. This A1 phase only depletes in Ca, not in Al (Al remains at bulk concentration), and is also enriched in oxygen. The Al-rich A1 phase is coherent with the C15 matrix. Electron energy loss spectroscopy revealed the amorphous phase to be Al 2 O 3 . We thereby show as one of the first studies that oxygen diffusion along crystal defects, especially also at the twin boundary can induce the formation of an amorphous oxide along themselves. The identification of oxygen-induced transformation at strained defects has to be considered when the material is exposed to air during plastic deformation at elevated temperatures.