论文标题

部分可观测时空混沌系统的无模型预测

Cluster Cepheids with High Precision Gaia Parallaxes, Low Zeropoint Uncertainties, and Hubble Space Telescope Photometry

论文作者

Riess, Adam G., Breuval, Louise, Yuan, Wenlong, Casertano, Stefano, ~Macri, Lucas M., Scolnic, Dan, Cantat-Gaudin, Tristan, Anderson, Richard I., Reyes, Mauricio Cruz

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present HST photometry of 17 Cepheids in open clusters and their mean parallaxes from Gaia EDR3. These parallaxes are more precise than those from individual Cepheids (G<8 mag) previously used to measure the Hubble constant because they are derived from an average of >300 stars per cluster. Cluster parallaxes also have smaller systematic uncertainty because their stars lie in the range (G>13 mag) where the Gaia parallax calibration is most comprehensive. Cepheid photometry employed in the period--luminosity relation was measured using the same instrument(WFC3) and filters(F555W,F814W,F160W) as extragalactic Cepheids in SNIa hosts. We find no evidence of residual parallax offset in this magnitude range, zp=-3+/-4 muas, consistent with Lindegren:2021b and most studies. The Cepheid luminosity (P=10d, solar-metallicity) in the HST near-infrared, Wesenheit system derived from the cluster sample is M_{H,1}^W=-5.902+/-0.025 and -5.890+/-0.018 mag with or without simultaneous determination of a parallax offset, respectively. These results are similar to measurements from field Cepheids, confirming the accuracy of the Gaia parallaxes over a broad range of magnitudes. The SH0ES distance ladder calibrated solely from this sample gives H_0=72.8+/-1.3 and H_0=73.2+/-1.1 km/s/Mpc with or without offset marginalization; combined with all anchors we find H_0=73.01+/-0.99 and 73.15+/-0.97, respectively, a 5% or 7% reduction in the uncertainty and a 5.3 sigma Hubble Tension relative to Planck+LambdaCDM. It appears increasingly difficult to reconcile two of the best measured cosmic scales, parallaxes from Gaia and the angular size of the acoustic scale of the CMB, using the simplest form of LambdaCDM to join the two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源